O MediaPipe Solutions oferece um conjunto de bibliotecas e ferramentas para você aplicar rapidamente
técnicas de inteligência artificial (IA) e machine learning (ML) nos seus
aplicativos. É possível conectar essas soluções aos seus aplicativos imediatamente,
personalizá-las de acordo com suas necessidades e usá-las em várias plataformas
de desenvolvimento. O MediaPipe Solutions faz parte do projeto de código aberto
MediaPipe, para que você possa personalizar ainda mais o
código das soluções de acordo com as necessidades do seu aplicativo. O pacote de soluções do MediaPipe
inclui o seguinte:
Essas bibliotecas e recursos fornecem a funcionalidade principal de cada solução do MediaPipe:
Tarefas do MediaPipe: APIs e bibliotecas multiplataforma para implantar
soluções. Saiba mais
Modelos do MediaPipe: modelos pré-treinados e prontos para execução para uso com cada
solução.
Essas ferramentas permitem personalizar e avaliar soluções:
MediaPipe Model Maker: personalize modelos para soluções com seus
dados. Saiba
mais
MediaPipe Studio: visualize, avalie e compare soluções no
navegador. Saiba
mais
Soluções disponíveis
O MediaPipe Solutions está disponível em várias plataformas. Cada solução
inclui um ou mais modelos, e você também pode personalizar modelos para algumas
soluções. A lista a seguir mostra quais soluções estão disponíveis para cada plataforma
compatível e se é possível usar o Model Maker para personalizar o modelo:
Para começar a usar o MediaPipe Solutions, selecione qualquer uma das tarefas
listadas na árvore de navegação à esquerda, incluindo
visão, texto e
áudio.
Se precisar de ajuda para configurar um ambiente de desenvolvimento para uso com as tarefas do MediaPipe, consulte os guias de configuração para
Android,
apps da Web e
Python.
Soluções legadas
O suporte às soluções legados do MediaPipe listadas abaixo foi encerrado em
1º de março de 2023. Todas as outras soluções legados do MediaPipe vão receber upgrade para uma nova
solução do MediaPipe. Confira a lista abaixo para mais detalhes. O
repositório de código e
os binários pré-criados para todas as soluções legados do MediaPipe vão continuar sendo
fornecidos no estado em que se encontram.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Não contém as informações de que eu preciso","missingTheInformationINeed","thumb-down"],["Muito complicado / etapas demais","tooComplicatedTooManySteps","thumb-down"],["Desatualizado","outOfDate","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Problema com as amostras / o código","samplesCodeIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-07-24 UTC."],[],[],null,["# MediaPipe Solutions guide\n\nMediaPipe Solutions provides a suite of libraries and tools for you to quickly\napply artificial intelligence (AI) and machine learning (ML) techniques in your\napplications. You can plug these solutions into your applications immediately,\ncustomize them to your needs, and use them across multiple development\nplatforms. MediaPipe Solutions is part of the MediaPipe [open source\nproject](https://github.com/google/mediapipe), so you can further customize the\nsolutions code to meet your application needs. The MediaPipe Solutions suite\nincludes the following:\n\nThese libraries and resources provide the core functionality for each MediaPipe\nSolution:\n\n- **MediaPipe Tasks** : Cross-platform APIs and libraries for deploying solutions. [Learn more](/edge/mediapipe/solutions/tasks)\n- **MediaPipe Models**: Pre-trained, ready-to-run models for use with each solution.\n\nThese tools let you customize and evaluate solutions:\n\n- **MediaPipe Model Maker** : Customize models for solutions with your data. [Learn\n more](/edge/mediapipe/solutions/model_maker)\n- **MediaPipe Studio** : Visualize, evaluate, and benchmark solutions in your browser. [Learn\n more](/edge/mediapipe/solutions/studio)\n\nAvailable solutions\n-------------------\n\nMediaPipe Solutions are available across multiple platforms. Each solution\nincludes one or more models, and you can customize models for some solutions as\nwell. The following list shows what solutions are available for each supported\nplatform and if you can use Model Maker to customize the model:\n\n| Solution | Android | Web | Python | iOS | Customize model |\n|------------------------------------------------------------------------------------|---------|-----|--------|-----|-----------------|\n| [LLM Inference API](/edge/mediapipe/solutions/genai/llm_inference) | | | | | |\n| [Object detection](/edge/mediapipe/solutions/vision/object_detector) | | | | | |\n| [Image classification](/edge/mediapipe/solutions/vision/image_classifier) | | | | | |\n| [Image segmentation](/edge/mediapipe/solutions/vision/image_segmenter) | | | | | |\n| [Interactive segmentation](/edge/mediapipe/solutions/vision/interactive_segmenter) | | | | | |\n| [Hand landmark detection](/edge/mediapipe/solutions/vision/hand_landmarker) | | | | | |\n| [Gesture recognition](/edge/mediapipe/solutions/vision/gesture_recognizer) | | | | | |\n| [Image embedding](/edge/mediapipe/solutions/vision/image_embedder) | | | | | |\n| [Face detection](/edge/mediapipe/solutions/vision/face_detector) | | | | | |\n| [Face landmark detection](/edge/mediapipe/solutions/vision/face_landmarker) | | | | | |\n| [Face stylization](/edge/mediapipe/solutions/vision/face_stylizer) | | | | | |\n| [Pose landmark detection](/edge/mediapipe/solutions/vision/pose_landmarker) | | | | | |\n| [Image generation](/edge/mediapipe/solutions/vision/image_generator) | | | | | |\n| [Text classification](/edge/mediapipe/solutions/text/text_classifier) | | | | | |\n| [Text embedding](/edge/mediapipe/solutions/text/text_embedder) | | | | | |\n| [Language detector](/edge/mediapipe/solutions/text/language_detector) | | | | | |\n| [Audio classification](/edge/mediapipe/solutions/audio/audio_classifier) | | | | | |\n\nGet started\n-----------\n\nYou can get started with MediaPipe Solutions by selecting any of the tasks\nlisted in the left navigation tree, including\n[vision](/edge/mediapipe/solutions/vision/object_detector),\n[text](/edge/mediapipe/solutions/text/text_classifier), and\n[audio](/edge/mediapipe/solutions/audio/audio_classifier) tasks.\nIf you need help setting up a development environment for use with MediaPipe\nTasks, check out the setup guides for\n[Android](/edge/mediapipe/solutions/setup_android),\n[web apps](/edge/mediapipe/solutions/setup_web), and\n[Python](/edge/mediapipe/solutions/setup_python).\n\nLegacy solutions\n----------------\n\nWe have ended support for the MediaPipe Legacy Solutions listed below as of\nMarch 1, 2023. All other MediaPipe Legacy Solutions will be upgraded to a new\nMediaPipe Solution. See the list below for details. The\n[code repository](https://github.com/google/mediapipe/tree/master/mediapipe) and\nprebuilt binaries for all MediaPipe Legacy Solutions will continue to be\nprovided on an as-is basis.\n\n| Legacy Solution | Status | New MediaPipe Solution |\n|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|\n| Face Detection ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/face_detection.md)) | [Upgraded](./vision/face_detector) | [Face detection](./vision/face_detector) |\n| Face Mesh ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/face_mesh.md)) | [Upgraded](./vision/face_landmarker) | [Face landmark detection](./vision/face_landmarker) |\n| Iris ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/iris.md)) | [Upgraded](./vision/face_landmarker) | [Face landmark detection](./vision/face_landmarker) |\n| Hands ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/hands.md)) | [Upgraded](./vision/hand_landmarker) | [Hand landmark detection](./vision/hand_landmarker) |\n| Pose ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/pose.md)) | [Upgraded](./vision/pose_landmarker) | [Pose landmark detection](./vision/pose_landmarker) |\n| Holistic ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/holistic.md)) | Upgrade | [Holistic landmarks detection](./vision/holistic_landmarker) |\n| Selfie segmentation ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/selfie_segmentation.md)) | [Upgraded](./vision/image_segmenter) | [Image segmentation](./vision/image_segmenter) |\n| Hair segmentation ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/hair_segmentation.md)) | [Upgraded](./vision/image_segmenter) | [Image segmentation](./vision/image_segmenter) |\n| Object detection ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/object_detection.md)) | [Upgraded](./vision/object_detector) | [Object detection](./vision/object_detector) |\n| Box tracking ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/box_tracking.md)) | Support ended | |\n| Instant motion tracking ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/instant_motion_tracking.md)) | Support ended | |\n| Objectron ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/objectron.md)) | Support ended | |\n| KNIFT ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/knift.md)) | Support ended | |\n| AutoFlip ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/autoflip.md)) | Support ended | |\n| MediaSequence ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/media_sequence.md)) | Support ended | |\n| YouTube 8M ([info](https://github.com/google/mediapipe/blob/master/docs/solutions/youtube_8m.md)) | Support ended | |"]]