MediaPipe টেক্সট ক্লাসিফায়ার টাস্ক আপনাকে ইতিবাচক বা নেতিবাচক অনুভূতির মতো সংজ্ঞায়িত বিভাগের একটি সেটে পাঠ্যকে শ্রেণীবদ্ধ করতে দেয়। আপনি যে মডেলটি ব্যবহার করেন এবং সেই মডেলটি কীভাবে প্রশিক্ষিত হয়েছিল তা বিভাগগুলি নির্ধারণ করা হয়। এই নির্দেশাবলী আপনাকে দেখায় কিভাবে ওয়েব এবং জাভাস্ক্রিপ্ট অ্যাপের জন্য টেক্সট ক্লাসিফায়ার ব্যবহার করতে হয়।
আপনি ডেমো দেখে এই কাজটি কার্যকর দেখতে পারেন। এই কাজের ক্ষমতা, মডেল এবং কনফিগারেশন বিকল্প সম্পর্কে আরও তথ্যের জন্য, ওভারভিউ দেখুন।
কোড উদাহরণ
টেক্সট ক্লাসিফায়ারের উদাহরণ কোডটি আপনার রেফারেন্সের জন্য জাভাস্ক্রিপ্টে এই টাস্কটির সম্পূর্ণ বাস্তবায়ন প্রদান করে। এই কোডটি আপনাকে এই কাজটি পরীক্ষা করতে এবং আপনার নিজস্ব টেক্সট ক্লাসিফিকেশন অ্যাপ তৈরি করা শুরু করতে সাহায্য করে। আপনি শুধুমাত্র আপনার ওয়েব ব্রাউজার ব্যবহার করে টেক্সট ক্লাসিফায়ার উদাহরণ কোড দেখতে, চালাতে এবং সম্পাদনা করতে পারেন।
সেটআপ
এই বিভাগে আপনার ডেভেলপমেন্ট এনভায়রনমেন্ট এবং কোড প্রোজেক্ট সেট আপ করার জন্য বিশেষভাবে টেক্সট ক্লাসিফায়ার ব্যবহার করার জন্য মূল ধাপগুলি বর্ণনা করা হয়েছে। প্ল্যাটফর্ম সংস্করণ প্রয়োজনীয়তা সহ MediaPipe টাস্কগুলি ব্যবহার করার জন্য আপনার বিকাশের পরিবেশ সেট আপ করার বিষয়ে সাধারণ তথ্যের জন্য, ওয়েবের জন্য সেটআপ নির্দেশিকা দেখুন।
জাভাস্ক্রিপ্ট প্যাকেজ
টেক্সট ক্লাসিফায়ার কোড @mediapipe/tasks-text
প্যাকেজের মাধ্যমে পাওয়া যায়। আপনি প্ল্যাটফর্ম সেটআপ গাইডে দেওয়া লিঙ্কগুলি থেকে এই লাইব্রেরিগুলি খুঁজে পেতে এবং ডাউনলোড করতে পারেন৷
আপনি নিম্নলিখিত কমান্ড ব্যবহার করে স্থানীয় স্টেজিংয়ের জন্য নিম্নলিখিত কোড সহ প্রয়োজনীয় প্যাকেজগুলি ইনস্টল করতে পারেন:
npm install @mediapipe/tasks-text
আপনি যদি একটি সার্ভারে স্থাপন করতে চান, আপনি একটি সামগ্রী বিতরণ নেটওয়ার্ক (CDN) পরিষেবা ব্যবহার করতে পারেন, যেমন jsDelivr আপনার HTML পৃষ্ঠায় সরাসরি কোড যোগ করতে, নিম্নরূপ:
<head>
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/tasks-text@0.1/text-bundle.js"
crossorigin="anonymous"></script>
</head>
মডেল
MediaPipe টেক্সট ক্লাসিফায়ার টাস্কের জন্য একটি প্রশিক্ষিত মডেল প্রয়োজন যা এই টাস্কের সাথে সামঞ্জস্যপূর্ণ। টেক্সট ক্লাসিফায়ারের জন্য উপলব্ধ প্রশিক্ষিত মডেল সম্পর্কে আরও তথ্যের জন্য, টাস্ক ওভারভিউ মডেল বিভাগটি দেখুন।
একটি মডেল নির্বাচন করুন এবং ডাউনলোড করুন, এবং তারপর এটি আপনার প্রকল্প ডিরেক্টরির মধ্যে সংরক্ষণ করুন:
<dev-project-root>/assets/bert_text_classifier.tflite
baseOptions
অবজেক্ট modelAssetPath
প্যারামিটার সহ মডেলের পাথ নির্দিষ্ট করুন, যেমনটি নীচে দেখানো হয়েছে:
baseOptions: {
modelAssetPath: `/assets/bert_text_classifier.tflite`
}
টাস্ক তৈরি করুন
অনুমান চালানোর জন্য টাস্ক প্রস্তুত করতে Text Classifier TextClassifier.createFrom...()
ফাংশনগুলির একটি ব্যবহার করুন। আপনি প্রশিক্ষিত মডেল ফাইলের আপেক্ষিক বা পরম পাথ সহ createFromModelPath()
ফাংশনটি ব্যবহার করতে পারেন। নীচের কোড উদাহরণটি TextClassifier.createFromOptions()
ফাংশন ব্যবহার করে দেখায়। উপলব্ধ কনফিগারেশন বিকল্পগুলি সম্পর্কে আরও তথ্যের জন্য, কনফিগারেশন বিকল্পগুলি দেখুন।
নিম্নলিখিত কোডটি এই কাজটি কীভাবে তৈরি এবং কনফিগার করতে হয় তা প্রদর্শন করে:
async function createClassifier() {
const textFiles = await FilesetResolver.forTextTasks("https://cdn.jsdelivr.net/npm/@mediapipe/tasks-text@latest/wasm/");
textClassifier = await TextClassifier.createFromOptions(
textFiles,
{
baseOptions: {
modelAssetPath: `https://storage.googleapis.com/mediapipe-tasks/text_classifier/bert_text_classifier.tflite`
},
maxResults: 5
}
);
}
createClassifier();
কনফিগারেশন বিকল্প
এই কাজটিতে ওয়েব এবং জাভাস্ক্রিপ্ট অ্যাপ্লিকেশনগুলির জন্য নিম্নলিখিত কনফিগারেশন বিকল্প রয়েছে:
বিকল্পের নাম | বর্ণনা | মান পরিসীমা | ডিফল্ট মান |
---|---|---|---|
displayNamesLocale | টাস্কের মডেলের মেটাডেটাতে প্রদত্ত প্রদর্শন নামের জন্য ব্যবহার করার জন্য লেবেলের ভাষা সেট করে, যদি উপলব্ধ থাকে। ইংরেজির জন্য ডিফল্ট হল en । আপনি TensorFlow Lite Metadata Writer API ব্যবহার করে একটি কাস্টম মডেলের মেটাডেটাতে স্থানীয় লেবেল যোগ করতে পারেন | স্থানীয় কোড | en |
maxResults | ফিরতে সর্বোচ্চ স্কোর করা শ্রেণীবিভাগ ফলাফলের ঐচ্ছিক সর্বোচ্চ সংখ্যা সেট করে। <0 হলে, সমস্ত উপলব্ধ ফলাফল ফেরত দেওয়া হবে। | যেকোনো ইতিবাচক সংখ্যা | -1 |
scoreThreshold | ভবিষ্যদ্বাণী স্কোর থ্রেশহোল্ড সেট করে যা মডেল মেটাডেটাতে প্রদত্ত একটিকে ওভাররাইড করে (যদি থাকে)। এই মানের নিচের ফলাফল প্রত্যাখ্যান করা হয়। | কোন ভাসা | সেট করা হয়নি |
categoryAllowlist | অনুমোদিত বিভাগের নামের ঐচ্ছিক তালিকা সেট করে। যদি খালি না থাকে, শ্রেণীবিভাগের ফলাফল যাদের বিভাগের নাম এই সেটে নেই সেগুলি ফিল্টার আউট করা হবে৷ সদৃশ বা অজানা বিভাগের নাম উপেক্ষা করা হয়। এই বিকল্পটি categoryDenylist সাথে পারস্পরিকভাবে একচেটিয়া এবং একটি ত্রুটিতে উভয় ফলাফল ব্যবহার করে। | কোনো স্ট্রিং | সেট করা হয়নি |
categoryDenylist | অনুমোদিত নয় এমন বিভাগের নামের ঐচ্ছিক তালিকা সেট করে। যদি খালি না থাকে, শ্রেণীবিভাগের ফলাফল যার বিভাগের নাম এই সেটে আছে তা ফিল্টার আউট করা হবে। সদৃশ বা অজানা বিভাগের নাম উপেক্ষা করা হয়। এই বিকল্পটি categoryAllowlist সাথে পারস্পরিকভাবে একচেটিয়া এবং একটি ত্রুটিতে উভয় ফলাফল ব্যবহার করে। | কোনো স্ট্রিং | সেট করা হয়নি |
ডেটা প্রস্তুত করুন
টেক্সট ক্লাসিফায়ার টেক্সট ( String
) ডেটা দিয়ে কাজ করে। টাস্কটি টোকেনাইজেশন এবং টেনসর প্রিপ্রসেসিং সহ ডেটা ইনপুট প্রিপ্রসেসিং পরিচালনা করে।
সমস্ত প্রিপ্রসেসিং classify()
ফাংশনের মধ্যে পরিচালিত হয়। আগে থেকে ইনপুট পাঠ্যের অতিরিক্ত প্রিপ্রসেসিংয়ের প্রয়োজন নেই।
const inputText = "The input text to be classified.";
টাস্ক চালান
টেক্সট ক্লাসিফায়ার অনুমানগুলিকে ট্রিগার করতে classify()
ফাংশন ব্যবহার করে। পাঠ্য শ্রেণীবিভাগের জন্য, এর অর্থ হল ইনপুট পাঠ্যের সম্ভাব্য বিভাগগুলি ফেরত দেওয়া।
নিম্নলিখিত কোডটি প্রদর্শন করে কিভাবে টাস্ক মডেলের সাথে প্রক্রিয়াকরণ চালানো যায়।
// Wait to run the function until inner text is set
const result: TextClassifierResult = await textClassifier.classify(
inputText
);
হ্যান্ডেল এবং প্রদর্শন ফলাফল
টেক্সট ক্লাসিফায়ার একটি TextClassifierResult
আউটপুট করে যাতে ইনপুট টেক্সটের সম্ভাব্য বিভাগের তালিকা থাকে। বিভাগগুলি আপনি যে মডেলটি ব্যবহার করেন তার দ্বারা সংজ্ঞায়িত করা হয়, তাই আপনি যদি বিভিন্ন বিভাগ চান, একটি ভিন্ন মডেল বেছে নিন বা বিদ্যমান একটিকে পুনরায় প্রশিক্ষণ দিন।
নিম্নলিখিত এই টাস্ক থেকে আউটপুট ডেটার একটি উদাহরণ দেখায়:
TextClassificationResult:
Classification #0 (single classification head):
ClassificationEntry #0:
Category #0:
category name: "positive"
score: 0.8904
index: 0
Category #1:
category name: "negative"
score: 0.1096
index: 1
এই ফলাফলটি ইনপুট টেক্সটে BERT-শ্রেণিফায়ার চালানোর মাধ্যমে প্রাপ্ত হয়েছে: "an imperfect but overall entertaining mystery"
।