পাইথনের জন্য ইন্টারেক্টিভ ইমেজ সেগমেন্টেশন গাইড

MediaPipe ইন্টারেক্টিভ ইমেজ সেগমেন্টার টাস্ক একটি ইমেজে একটি অবস্থান নেয়, সেই অবস্থানে একটি অবজেক্টের সীমানা অনুমান করে এবং ইমেজ ডেটা হিসাবে অবজেক্টের জন্য সেগমেন্টেশন প্রদান করে। এই নির্দেশাবলী আপনাকে দেখায় কিভাবে পাইথন ভাষার সাথে ইন্টারেক্টিভ ইমেজ সেগমেন্টার ব্যবহার করতে হয়। এই কাজের ক্ষমতা, মডেল এবং কনফিগারেশন বিকল্প সম্পর্কে আরও তথ্যের জন্য, ওভারভিউ দেখুন।

কোড উদাহরণ

ইন্টারেক্টিভ ইমেজ সেগমেন্টারের উদাহরণ কোডটি আপনার রেফারেন্সের জন্য পাইথনে এই টাস্কটির সম্পূর্ণ বাস্তবায়ন প্রদান করে। এই কোডটি আপনাকে এই কাজটি পরীক্ষা করতে এবং আপনার নিজস্ব ইন্টারেক্টিভ ইমেজ সেগমেন্টেশন অ্যাপ্লিকেশন তৈরি করতে শুরু করতে সহায়তা করে। আপনি শুধুমাত্র আপনার ওয়েব ব্রাউজার ব্যবহার করে ইন্টারেক্টিভ ইমেজ সেগমেন্টার উদাহরণ কোড দেখতে, চালাতে এবং সম্পাদনা করতে পারেন।

সেটআপ

এই বিভাগে বিশেষভাবে ইন্টারেক্টিভ ইমেজ সেগমেন্টার ব্যবহার করার জন্য আপনার ডেভেলপমেন্ট এনভায়রনমেন্ট এবং কোড প্রোজেক্ট সেট আপ করার জন্য মূল ধাপগুলি বর্ণনা করে। প্ল্যাটফর্ম সংস্করণ প্রয়োজনীয়তা সহ MediaPipe কার্যগুলি ব্যবহার করার জন্য আপনার বিকাশের পরিবেশ সেট আপ করার বিষয়ে সাধারণ তথ্যের জন্য, পাইথনের জন্য সেটআপ নির্দেশিকা দেখুন। আপনি GitHub এ এই উদাহরণের জন্য সোর্স কোড পর্যালোচনা করতে পারেন

প্যাকেজ

মিডিয়াপাইপ ইন্টারেক্টিভ ইমেজ সেগমেন্টার টাস্কের জন্য mediapipe প্যাকেজ প্রয়োজন। আপনি নিম্নলিখিত কমান্ড দিয়ে প্রয়োজনীয় নির্ভরতা ইনস্টল করতে পারেন:

$ python -m pip install mediapipe

আমদানি

ইন্টারেক্টিভ ইমেজ সেগমেন্টার টাস্ক ফাংশন অ্যাক্সেস করতে নিম্নলিখিত ক্লাসগুলি আমদানি করুন:

import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision

মডেল

MediaPipe ইন্টারেক্টিভ ইমেজ সেগমেন্টার টাস্কের জন্য একটি প্রশিক্ষিত মডেল প্রয়োজন যা এই কাজের সাথে সামঞ্জস্যপূর্ণ। ইন্টারেক্টিভ ইমেজ সেগমেন্টারের জন্য উপলব্ধ প্রশিক্ষিত মডেল সম্পর্কে আরও তথ্যের জন্য, টাস্ক ওভারভিউ মডেল বিভাগটি দেখুন।

মডেল নির্বাচন করুন এবং ডাউনলোড করুন, এবং তারপর আপনার প্রকল্প ডিরেক্টরির মধ্যে এটি সংরক্ষণ করুন:

model_path = '/absolute/path/to/model.tflite'

model_asset_path প্যারামিটারের মধ্যে মডেলের পাথ নির্দিষ্ট করুন, যেমনটি নীচে দেখানো হয়েছে:

base_options = BaseOptions(model_asset_path=model_path)

টাস্ক তৈরি করুন

MediaPipe ইন্টারেক্টিভ ইমেজ সেগমেন্টার টাস্কটি টাস্ক সেট আপ করতে create_from_options ফাংশন ব্যবহার করে। create_from_options ফাংশন কনফিগারেশন অপশন পরিচালনার জন্য মান গ্রহণ করে। কনফিগারেশন বিকল্প সম্পর্কে আরও তথ্যের জন্য, কনফিগারেশন বিকল্পগুলি দেখুন। নিম্নলিখিত কোডটি এই কাজটি কীভাবে তৈরি এবং কনফিগার করতে হয় তা প্রদর্শন করে।

BaseOptions = mp.tasks.BaseOptions
InteractiveSegmenter = mp.tasks.vision.InteractiveSegmenter
InteractiveSegmenterOptions = mp.tasks.vision.InteractiveSegmenterOptions
VisionRunningMode = mp.tasks.vision.RunningMode

# Create a image segmenter instance with the image mode:
options = InteractiveSegmenterOptions(
    base_options=BaseOptions(model_asset_path='/path/to/model.task'),
    running_mode=VisionRunningMode.IMAGE,
    output_type=InteractiveSegmenterOptions.OutputType.CATEGORY_MASK)
with InteractiveSegmenter.create_from_options(options) as segmenter:
# segmenter is initialized and ready to use
output_category_mask যদি True তে সেট করা হয়, আউটপুটে একটি uint8 ইমেজ হিসাবে একটি বিভাজন মাস্ক অন্তর্ভুক্ত থাকে, যেখানে প্রতিটি পিক্সেল মান নির্দেশ করে যে পিক্সেলটি আগ্রহের এলাকায় অবস্থিত বস্তুর অংশ কিনা। { True, False } False output_confidence_masks যদি True তে সেট করা হয়, আউটপুটে একটি ফ্লোট মান চিত্র হিসাবে একটি বিভাজন মাস্ক অন্তর্ভুক্ত থাকে, যেখানে প্রতিটি ফ্লোট মান আত্মবিশ্বাসের প্রতিনিধিত্ব করে যে পিক্সেলটি আগ্রহের এলাকায় অবস্থিত বস্তুর অংশ। { True, False } True display_names_locale টাস্কের মডেলের মেটাডেটাতে প্রদত্ত প্রদর্শন নামের জন্য ব্যবহার করার জন্য লেবেলের ভাষা সেট করে, যদি উপলব্ধ থাকে। ইংরেজির জন্য ডিফল্ট হল en । আপনি TensorFlow Lite Metadata Writer API ব্যবহার করে একটি কাস্টম মডেলের মেটাডেটাতে স্থানীয় লেবেল যোগ করতে পারেন স্থানীয় কোড en

ডেটা প্রস্তুত করুন

একটি ইমেজ ফাইল বা একটি নম্পি অ্যারে হিসাবে আপনার ইনপুট প্রস্তুত করুন, তারপর এটিকে mediapipe.Image ইমেজ অবজেক্টে রূপান্তর করুন।

# Load the input image from an image file.
mp_image = mp.Image.create_from_file('/path/to/image')

# Load the input image from a numpy array.
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_image)
RegionOfInterest = vision.InteractiveSegmenterRegionOfInterest
# Perform image segmentation on the provided single image.
# The image segmenter must be created with the image mode.
roi = RegionOfInterest(format=RegionOfInterest.Format.KEYPOINT,
                          keypoint=NormalizedKeypoint(x, y))
segmented_masks = segmenter.segment(mp_image, roi)