คำแนะนำการตรวจจับออบเจ็กต์สำหรับ Python

งานตัวตรวจจับวัตถุ MediaPipe ช่วยให้คุณตรวจหาการมีอยู่และตำแหน่งของวัตถุหลายคลาสได้ วิธีการเหล่านี้แสดงวิธีใช้งานตัวตรวจจับวัตถุใน Python ตัวอย่างโค้ดที่อธิบายไว้ในวิธีการเหล่านี้มีอยู่ใน GitHub

คุณสามารถดูการทำงานของงานนี้ได้โดยดูเดโมบนเว็บ ดูข้อมูลเพิ่มเติมเกี่ยวกับความสามารถ รูปแบบ และตัวเลือกการกําหนดค่าของงานนี้ได้ที่ภาพรวม

ตัวอย่างโค้ด

โค้ดตัวอย่างสำหรับตัวตรวจจับวัตถุแสดงการใช้งานที่สมบูรณ์ของงานนี้ใน Python เพื่อเป็นข้อมูลอ้างอิง โค้ดนี้จะช่วยคุณทดสอบงานนี้และเริ่มต้นสร้างแอปการจัดประเภทข้อความของคุณเอง คุณสามารถดู เรียกใช้ และแก้ไขโค้ดตัวอย่างของโปรแกรมตรวจจับวัตถุได้โดยใช้เพียงเว็บเบราว์เซอร์

หากใช้เครื่องมือตรวจจับวัตถุสำหรับ Raspberry Pi โปรดดูตัวอย่างแอป Raspberry Pi

ตั้งค่า

ส่วนนี้จะอธิบายขั้นตอนสำคัญในการตั้งค่าสภาพแวดล้อมการพัฒนาและโปรเจ็กต์โค้ดเพื่อใช้โปรแกรมตรวจจับวัตถุโดยเฉพาะ ดูข้อมูลทั่วไปเกี่ยวกับการตั้งค่าสภาพแวดล้อมการพัฒนาซอฟต์แวร์เพื่อใช้งาน MediaPipe รวมถึงข้อกำหนดเวอร์ชันแพลตฟอร์มได้ที่คู่มือการตั้งค่าสำหรับ Python

แพ็กเกจ

ภารกิจตัวตรวจจับวัตถุต้องใช้แพ็กเกจ mediapipe pip คุณสามารถติดตั้งแพ็กเกจที่จําเป็นได้ด้วยคําสั่งต่อไปนี้

$ python -m pip install mediapipe

การนำเข้า

นําเข้าคลาสต่อไปนี้เพื่อเข้าถึงฟังก์ชันงานของโปรแกรมตรวจจับวัตถุ

import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision

รุ่น

ภารกิจของ MediaPipe Object Detector ต้องใช้โมเดลที่ผ่านการฝึกซึ่งเข้ากันได้กับภารกิจนี้ ดูข้อมูลเพิ่มเติมเกี่ยวกับโมเดลที่ผ่านการฝึกอบรมแล้วสำหรับตัวตรวจจับวัตถุได้ที่ส่วนโมเดลในภาพรวมของงาน

เลือกและดาวน์โหลดโมเดล แล้วจัดเก็บไว้ในไดเรกทอรีในเครื่องโดยทำดังนี้

model_path = '/absolute/path/to/lite-model_efficientdet_lite0_detection_metadata_1.tflite'

ใช้พารามิเตอร์BaseOptionsออบเจ็กต์ model_asset_path เพื่อระบุเส้นทางของโมเดลที่จะใช้ ดูตัวอย่างโค้ดได้ที่ส่วนถัดไป

สร้างงาน

ใช้ฟังก์ชัน create_from_options เพื่อสร้างงาน ฟังก์ชัน create_from_options ยอมรับตัวเลือกการกําหนดค่า ซึ่งรวมถึงโหมดการทํางาน ภาษาของชื่อที่แสดง จํานวนผลลัพธ์สูงสุด เกณฑ์ความเชื่อมั่น รายการที่อนุญาตของหมวดหมู่ และรายการที่ปฏิเสธ หากคุณไม่ได้ตั้งค่าตัวเลือกการกําหนดค่า งานจะใช้ค่าเริ่มต้น ดูข้อมูลเพิ่มเติมเกี่ยวกับตัวเลือกการกำหนดค่าได้ในส่วนตัวเลือกการกำหนดค่า

ภารกิจตัวตรวจจับวัตถุรองรับข้อมูลอินพุตหลายประเภท ได้แก่ ภาพนิ่ง ไฟล์วิดีโอ และสตรีมวิดีโอสด เลือกแท็บที่สอดคล้องกับประเภทข้อมูลอินพุตเพื่อดูวิธีสร้างงานและเรียกใช้การอนุมาน

รูปภาพ

import mediapipe as mp

BaseOptions = mp.tasks.BaseOptions
ObjectDetector = mp.tasks.vision.ObjectDetector
ObjectDetectorOptions = mp.tasks.vision.ObjectDetectorOptions
VisionRunningMode = mp.tasks.vision.RunningMode

options = ObjectDetectorOptions(
    base_options=BaseOptions(model_asset_path='/path/to/model.tflite'),
    max_results=5,
    running_mode=VisionRunningMode.IMAGE)

with ObjectDetector.create_from_options(options) as detector:
  # The detector is initialized. Use it here.
  # ...
    

วิดีโอ

import mediapipe as mp

BaseOptions = mp.tasks.BaseOptions
ObjectDetector = mp.tasks.vision.ObjectDetector
ObjectDetectorOptions = mp.tasks.vision.ObjectDetectorOptions
VisionRunningMode = mp.tasks.vision.RunningMode

options = ObjectDetectorOptions(
    base_options=BaseOptions(model_asset_path='/path/to/model.tflite'),
    max_results=5,
    running_mode=VisionRunningMode.VIDEO)

with ObjectDetector.create_from_options(options) as detector:
  # The detector is initialized. Use it here.
  # ...
    

ไลฟ์สด

import mediapipe as mp

BaseOptions = mp.tasks.BaseOptions
DetectionResult = mp.tasks.components.containers.detections.DetectionResult
ObjectDetector = mp.tasks.vision.ObjectDetector
ObjectDetectorOptions = mp.tasks.vision.ObjectDetectorOptions
VisionRunningMode = mp.tasks.vision.RunningMode

def print_result(result: DetectionResult, output_image: mp.Image, timestamp_ms: int):
    print('detection result: {}'.format(result))

options = ObjectDetectorOptions(
    base_options=BaseOptions(model_asset_path='/path/to/model.tflite'),
    running_mode=VisionRunningMode.LIVE_STREAM,
    max_results=5,
    result_callback=print_result)

with ObjectDetector.create_from_options(options) as detector:
  # The detector is initialized. Use it here.
  # ...
    

ดูตัวอย่างการสร้างตัวตรวจจับวัตถุเพื่อใช้กับรูปภาพได้ที่ตัวอย่างโค้ด

ตัวเลือกการกำหนดค่า

งานนี้มีตัวเลือกการกำหนดค่าต่อไปนี้สำหรับแอปพลิเคชัน Python

ชื่อตัวเลือก คำอธิบาย ช่วงของค่า ค่าเริ่มต้น
running_mode ตั้งค่าโหมดการทํางานสําหรับงาน โดยโหมดมี 3 แบบ ดังนี้

รูปภาพ: โหมดสำหรับอินพุตรูปภาพเดียว

วิดีโอ: โหมดสำหรับเฟรมที่ถอดรหัสของวิดีโอ

LIVE_STREAM: โหมดสตรีมแบบสดของข้อมูลอินพุต เช่น จากกล้อง ในโหมดนี้ คุณต้องเรียกใช้ resultListener เพื่อตั้งค่า Listener เพื่อรับผลลัพธ์แบบไม่พร้อมกัน
{IMAGE, VIDEO, LIVE_STREAM} IMAGE
display_names ตั้งค่าภาษาของป้ายกำกับที่จะใช้สำหรับชื่อที่แสดงซึ่งระบุไว้ในข้อมูลเมตาของโมเดลของงาน (หากมี) ค่าเริ่มต้นคือ en สำหรับภาษาอังกฤษ คุณเพิ่มป้ายกำกับที่แปลแล้วลงในข้อมูลเมตาของโมเดลที่กำหนดเองได้โดยใช้ TensorFlow Lite Metadata Writer API รหัสภาษา en
max_results กําหนดจํานวนสูงสุดของผลการค้นหาที่ตรวจพบซึ่งได้คะแนนสูงสุดที่จะแสดง (ไม่บังคับ) ตัวเลขบวกใดก็ได้ -1 (แสดงผลลัพธ์ทั้งหมด)
score_threshold ตั้งค่าเกณฑ์คะแนนการคาดการณ์ที่จะลบล้างเกณฑ์ที่ระบุไว้ในข้อมูลเมตาของโมเดล (หากมี) ระบบจะปฏิเสธผลลัพธ์ที่ต่ำกว่าค่านี้ ตัวเลขทศนิยม ไม่ได้ตั้งค่า
category_allowlist ตั้งค่ารายการชื่อหมวดหมู่ที่อนุญาต (ไม่บังคับ) หากไม่ว่างเปล่า ระบบจะกรองผลการตรวจหาที่มีชื่อหมวดหมู่ไม่อยู่ในชุดนี้ออก ระบบจะไม่สนใจชื่อหมวดหมู่ที่ซ้ำกันหรือไม่รู้จัก ตัวเลือกนี้ใช้ร่วมกับ category_denylist ไม่ได้ และการใช้ทั้ง 2 ตัวเลือกจะทำให้เกิดข้อผิดพลาด สตริงใดก็ได้ ไม่ได้ตั้งค่า
category_denylist ตั้งค่ารายการชื่อหมวดหมู่ที่ไม่อนุญาต (ไม่บังคับ) หากไม่ว่างเปล่า ระบบจะกรองผลการตรวจหาที่มีชื่อหมวดหมู่อยู่ในชุดนี้ออก ระบบจะไม่สนใจชื่อหมวดหมู่ที่ซ้ำกันหรือไม่รู้จัก ตัวเลือกนี้ใช้ร่วมกันกับ category_allowlist ไม่ได้ และการใช้ทั้ง 2 ตัวเลือกจะทำให้เกิดข้อผิดพลาด สตริงใดก็ได้ ไม่ได้ตั้งค่า

เตรียมข้อมูล

เตรียมอินพุตเป็นไฟล์รูปภาพหรืออาร์เรย์ NumPy จากนั้นแปลงเป็นออบเจ็กต์ mediapipe.Image หากอินพุตเป็นไฟล์วิดีโอหรือสตรีมแบบสดจากเว็บแคม คุณสามารถใช้ไลบรารีภายนอก เช่น OpenCV เพื่อโหลดเฟรมอินพุตเป็นอาร์เรย์ numpy

ตัวอย่างต่อไปนี้อธิบายและแสดงวิธีเตรียมข้อมูลสําหรับการประมวลผลสำหรับข้อมูลแต่ละประเภทที่ใช้ได้

รูปภาพ

import mediapipe as mp

# Load the input image from an image file.
mp_image = mp.Image.create_from_file('/path/to/image')

# Load the input image from a numpy array.
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_image)
    

วิดีโอ

import mediapipe as mp

# Use OpenCV’s VideoCapture to load the input video.

# Load the frame rate of the video using OpenCV’s CV_CAP_PROP_FPS
# You’ll need it to calculate the timestamp for each frame.

# Loop through each frame in the video using VideoCapture#read()

# Convert the frame received from OpenCV to a MediaPipe’s Image object.
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_frame_from_opencv)
    

ไลฟ์สด

import mediapipe as mp

# Use OpenCV’s VideoCapture to start capturing from the webcam.

# Create a loop to read the latest frame from the camera using VideoCapture#read()

# Convert the frame received from OpenCV to a MediaPipe’s Image object.
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_frame_from_opencv)
    

เรียกใช้งาน

คุณสามารถเรียกใช้ฟังก์ชันตรวจหาอย่างใดอย่างหนึ่งเพื่อทริกเกอร์การอนุมาน งานตัวตรวจจับวัตถุจะแสดงผลวัตถุที่ตรวจพบภายในรูปภาพหรือเฟรมอินพุต

รูปภาพ

# Perform object detection on the provided single image.
detection_result = detector.detect(mp_image)
    

วิดีโอ

# Calculate the timestamp of the current frame
frame_timestamp_ms = 1000 * frame_index / video_file_fps

# Perform object detection on the video frame.
detection_result = detector.detect_for_video(mp_image, frame_timestamp_ms)
    

ไลฟ์สด

# Send the latest frame to perform object detection.
# Results are sent to the `result_callback` provided in the `ObjectDetectorOptions`.
detector.detect_async(mp_image, frame_timestamp_ms)
    

ดูตัวอย่างที่สมบูรณ์ของการใช้เครื่องมือตรวจจับวัตถุในรูปภาพได้ที่รายละเอียดในตัวอย่างโค้ด

โปรดทราบดังต่อไปนี้

  • เมื่อทำงานในโหมดวิดีโอหรือโหมดสตรีมแบบสด คุณต้องระบุการประทับเวลาของเฟรมอินพุตให้กับงานตัวตรวจจับวัตถุด้วย
  • เมื่อทำงานในโมเดลรูปภาพหรือวิดีโอ งานตัวตรวจจับวัตถุจะบล็อกเธรดปัจจุบันจนกว่าจะประมวลผลรูปภาพหรือเฟรมอินพุตเสร็จ
  • เมื่อทำงานในโหมดสตรีมแบบสด งานของโปรแกรมตรวจจับวัตถุจะไม่บล็อกเธรดปัจจุบัน แต่จะแสดงผลทันที โดยจะเรียกใช้โปรแกรมรับฟังผลลัพธ์พร้อมผลการตรวจจับทุกครั้งที่ประมวลผลเฟรมอินพุตเสร็จแล้ว หากมีการเรียกใช้ฟังก์ชัน detect เมื่องานของโปรแกรมตรวจจับวัตถุกำลังประมวลผลเฟรมอื่นอยู่ ระบบจะไม่สนใจเฟรมอินพุตใหม่

จัดการและแสดงผลลัพธ์

เมื่อทำการอนุมาน งานตรวจจับวัตถุจะแสดงผลออบเจ็กต์ ObjectDetectionResult ซึ่งอธิบายวัตถุที่พบในรูปภาพอินพุต

ต่อไปนี้เป็นตัวอย่างข้อมูลเอาต์พุตจากงานนี้

ObjectDetectorResult:
 Detection #0:
  Box: (x: 355, y: 133, w: 190, h: 206)
  Categories:
   index       : 17
   score       : 0.73828
   class name  : dog
 Detection #1:
  Box: (x: 103, y: 15, w: 138, h: 369)
  Categories:
   index       : 17
   score       : 0.73047
   class name  : dog

รูปภาพต่อไปนี้แสดงภาพเอาต์พุตของงาน

สุนัข 2 ตัวที่ไฮไลต์ด้วยกรอบล้อมรอบ

โค้ดตัวอย่างของโปรแกรมตรวจจับวัตถุแสดงวิธีแสดงผลลัพธ์การตรวจจับที่แสดงผลจากงาน ดูรายละเอียดได้ในตัวอย่างโค้ด