Lệnh gọi hàm giúp bạn dễ dàng nhận được đầu ra dữ liệu có cấu trúc từ các mô hình tạo sinh. Sau đó, bạn có thể sử dụng những dữ liệu đầu ra này để gọi các API khác và trả về dữ liệu phản hồi phù hợp cho mô hình. Nói cách khác, lệnh gọi hàm giúp bạn kết nối các mô hình tạo sinh với các hệ thống bên ngoài để nội dung được tạo có thông tin mới nhất và chính xác nhất.
Bạn có thể cung cấp cho mô hình Gemini nội dung mô tả về các hàm. Đây là các hàm mà bạn viết bằng ngôn ngữ của ứng dụng (tức là không phải là Hàm trên Google Cloud). Mô hình có thể yêu cầu bạn gọi một hàm và gửi lại kết quả để giúp mô hình xử lý truy vấn của bạn.
Nếu bạn chưa xem, hãy xem Giới thiệu về cách gọi hàm để tìm hiểu khác.
API mẫu để điều khiển ánh sáng
Giả sử bạn có một hệ thống điều khiển ánh sáng cơ bản bằng một chương trình lập trình ứng dụng giao diện (API) và bạn muốn cho phép người dùng điều khiển đèn thông qua yêu cầu tin nhắn văn bản. Bạn có thể sử dụng tính năng Gọi hàm để diễn giải các yêu cầu thay đổi ánh sáng của người dùng và dịch các yêu cầu đó thành lệnh gọi API để đặt các giá trị ánh sáng. Hệ thống điều khiển ánh sáng giả định này cho phép bạn kiểm soát độ sáng của ánh sáng và nhiệt độ màu của ánh sáng, được xác định là hai tham số riêng biệt:
Thông số | Loại | Bắt buộc | Mô tả |
---|---|---|---|
brightness |
số | có | Mức độ sáng từ 0 đến 100. Mức 0 đang tắt và mức 100 có độ sáng tối đa. |
colorTemperature |
string | có | Nhiệt độ màu của thiết bị chiếu sáng có thể là daylight , cool hoặc warm . |
Để đơn giản, hệ thống chiếu sáng tưởng tượng này chỉ có một đèn, vì vậy, người dùng không cần chỉ định phòng hoặc vị trí. Dưới đây là một yêu cầu JSON mẫu mà bạn có thể gửi đến API điều khiển ánh sáng để thay đổi độ sáng thành 50% bằng cách sử dụng nhiệt độ màu ban ngày:
{
"brightness": "50",
"colorTemperature": "daylight"
}
Hướng dẫn này chỉ cho bạn cách thiết lập Lệnh gọi hàm cho Gemini API để diễn giải các yêu cầu về chiếu sáng của người dùng và ánh xạ chúng tới chế độ cài đặt API để điều khiển các giá trị độ sáng và nhiệt độ màu của đèn.
Trước khi bắt đầu: Thiết lập dự án và khoá API
Trước khi gọi API Gemini, bạn cần thiết lập dự án và định cấu hình khoá API.
Xác định hàm API
Tạo một hàm tạo yêu cầu API. Bạn nên xác định hàm này trong mã của ứng dụng, nhưng có thể gọi các dịch vụ hoặc API bên ngoài ứng dụng. API Gemini không gọi trực tiếp hàm này, vì vậy, bạn có thể kiểm soát cách thức và thời điểm thực thi hàm này thông qua mã ứng dụng. Để minh hoạ, hướng dẫn này xác định một hàm API mô phỏng chỉ trả về các giá trị ánh sáng được yêu cầu:
suspend fun setLightValues(
brightness: Int,
colorTemp: String
): JSONObject {
// This mock API returns the requested lighting values
return JSONObject().apply {
put("brightness", brightness)
put("colorTemperature", colorTemp)
}
}
Tạo phần khai báo hàm
Tạo nội dung khai báo hàm mà bạn sẽ truyền vào mô hình tạo sinh. Thời gian khi khai báo một hàm để mô hình sử dụng, bạn nên cung cấp càng nhiều thông tin chi tiết càng tốt nhất có thể trong phần mô tả hàm và tham số. Mô hình tạo sinh sử dụng thông tin này để xác định hàm cần chọn và cách cung cấp giá trị cho các tham số trong lệnh gọi hàm. Đoạn mã sau đây cho biết cách khai báo chức năng điều khiển ánh sáng:
val lightControlTool = defineFunction(
name = "setLightValues",
description = "Set the brightness and color temperature of a room light.",
Schema.int("brightness", "Light level from 0 to 100. Zero is off and 100" +
" is full brightness."),
Schema.str("colorTemperature", "Color temperature of the light fixture" +
" which can be `daylight`, `cool` or `warm`.")
) { brightness, colorTemp ->
// Call the function you declared above
setLightValues(brightness.toInt(), colorTemp)
}
Khai báo hàm trong quá trình khởi chạy mô hình
Khi muốn sử dụng lệnh gọi hàm với một mô hình, bạn phải cung cấp nội dung khai báo hàm khi khởi tạo đối tượng mô hình. Bạn khai báo các hàm
bằng cách đặt tham số tools
của mô hình:
val generativeModel = GenerativeModel(
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable
apiKey = BuildConfig.apiKey,
// Specify the function declaration.
tools = listOf(Tool(listOf(lightControlTool)))
)
Tạo lệnh gọi hàm
Sau khi khởi chạy mô hình bằng các nội dung khai báo hàm, bạn có thể nhắc mô hình bằng hàm đã xác định. Bạn nên dùng phương thức gọi hàm bằng cách sử dụng
lời nhắc trò chuyện (sendMessage()
), vì tính năng gọi hàm thường được hưởng lợi từ
dựa trên ngữ cảnh của các câu lệnh và câu trả lời trước đó.
val chat = generativeModel.startChat()
val prompt = "Dim the lights so the room feels cozy and warm."
// Send the message to the generative model
var response = chat.sendMessage(prompt)
// Check if the model responded with a function call
response.functionCall?.let { functionCall ->
// Try to retrieve the stored lambda from the model's tools and
// throw an exception if the returned function was not declared
val matchedFunction = generativeModel.tools?.flatMap { it.functionDeclarations }
?.first { it.name == functionCall.name }
?: throw InvalidStateException("Function not found: ${functionCall.name}")
// Call the lambda retrieved above
val apiResponse: JSONObject = matchedFunction.execute(functionCall)
// Send the API response back to the generative model
// so that it generates a text response that can be displayed to the user
response = chat.sendMessage(
content(role = "function") {
part(FunctionResponsePart(functionCall.name, apiResponse))
}
)
}
// Whenever the model responds with text, show it in the UI
response.text?.let { modelResponse ->
println(modelResponse)
}