Function calling makes it easier for you to get structured data outputs from generative models. You can then use these outputs to call other APIs and return the relevant response data to the model. In other words, function calling helps you connect generative models to external systems so that the generated content includes the most up-to-date and accurate information.
You can provide Gemini models with descriptions of functions. These are functions that you write in the language of your app (that is, they're not Google Cloud Functions). The model may ask you to call a function and send back the result to help the model handle your query.
If you haven't already, check out the Introduction to function calling to learn more.
Example API for lighting control
Imagine you have a basic lighting control system with an application programming interface (API) and you want to allow users to control the lights through simple text requests. You can use the Function Calling feature to interpret lighting change requests from users and translate them into API calls to set the lighting values. This hypothetical lighting control system lets you control the brightness of the light and it's color temperature, defined as two separate parameters:
Parameter | Type | Required | Description |
---|---|---|---|
brightness |
number | yes | Light level from 0 to 100. Zero is off and 100 is full brightness. |
colorTemperature |
string | yes | Color temperature of the light fixture which can be daylight , cool or warm . |
For simplicity, this imaginary lighting system only has one light, so the user does not have to specify a room or location. Here is an example JSON request you could send to the lighting control API to change the light level to 50% using the daylight color temperature:
{
"brightness": "50",
"colorTemperature": "daylight"
}
This tutorial shows you how to set up a Function Call for the Gemini API to interpret users lighting requests and map them to API settings to control a light's brightness and color temperature values.
Before you begin: Set up your project and API key
Before calling the Gemini API, you need to set up your project and configure your API key.
Get and secure your API key
You need an API key to call the Gemini API. If you don't already have one, create a key in Google AI Studio.
It's strongly recommended that you do not check an API key into your version control system.
You should store your API key in a secrets store such as Google Cloud Secret Manager.
This tutorial assumes that you're accessing your API key as
a process environment variable. If you're developing a Flutter app, you can use
String.fromEnvironment
and pass --dart-define=API_KEY=$API_KEY
to
flutter build
or flutter run
to compile with the API key since the process
environment will be different when running the app.
Import the SDK package and configure your API key
To use the Gemini API in your own application, you need to add
the
google_generative_ai
package to your Dart or Flutter app:
Dart
dart pub add google_generative_ai
Flutter
flutter pub add google_generative_ai
Define an API function
Create a function that makes an API request. This function should be defined within the code of your application, but could call services or APIs outside of your application. The Gemini API does not call this function directly, so you can control how and when this function is executed through your application code. For demonstration purposes, this tutorial defines a mock API function that just returns the requested lighting values:
Future<Map<String, Object?>> setLightValues(
Map<String, Object?> arguments,
) async =>
// This mock API returns the requested lighting values
{
'brightness': arguments['brightness'],
'colorTemperature': arguments['colorTemp'],
};
Create function declarations
Create the function declaration that you'll pass to the generative model. When you declare a function for use by the model, you should include as much detail as possible in the function and parameter descriptions. The generative model uses this information to determine which function to select and how to provide values for the parameters in the function call. The following code shows how to declare the lighting control function:
final lightControlTool = FunctionDeclaration(
'setLightValues',
'Set the brightness and color temperature of a room light.',
Schema(SchemaType.object, properties: {
'brightness': Schema(SchemaType.number,
description: 'Light level from 0 to 100. '
'Zero is off and 100 is full brightness.'),
'colorTemperature': Schema(SchemaType.string,
description: 'Color temperature of the light fixture, '
'which can be `daylight`, `cool` or `warm`.'),
}, requiredProperties: [
'brightness',
'colorTemperature'
]));
Declare functions during model initialization
When you want to use function calling with a model, you must provide your
function declarations when you initialize the model object. You declare
functions by setting the model's tools
parameter. The Dart SDK also supports
declaring the functions as arguments to the generateContent
or
generateContentStream
APIs.
final model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
// Specify the function declaration.
tools: [
Tool(functionDeclarations: [lightControlTool])
],
);
Generate a function call
Once you have initialized model with your function declarations, you can prompt
the model with the defined function. You should use function calling using
chat prompting (sendMessage()
), since function calling generally benefits from
having the context of previous prompts and responses.
final chat = model.startChat(); final prompt =
'Dim the lights so the room feels cozy and warm.';
// Send the message to the generative model.
var response = await chat.sendMessage(Content.text(prompt));
final functionCalls = response.functionCalls.toList();
// When the model response with a function call, invoke the function.
if (functionCalls.isNotEmpty) {
final functionCall = functionCalls.first;
final result = switch (functionCall.name) {
// Forward arguments to the hypothetical API.
'setLightValues' => await setLightValues(functionCall.args),
// Throw an exception if the model attempted to call a function that was
// not declared.
_ => throw UnimplementedError(
'Function not implemented: ${functionCall.name}')
};
// Send the response to the model so that it can use the result to generate
// text for the user.
response = await chat
.sendMessage(Content.functionResponse(functionCall.name, result));
}
// When the model responds with non-null text content, print it.
if (response.text case final text?) {
print(text);
}