Gjenerimi i imazheve me Gemini (i njohur edhe si Nano Banana & Nano Banana Pro)

Gemini mund të gjenerojë dhe përpunojë imazhe në mënyrë bisedore. Ju mund të aktivizoni modelet e imazheve Gemini 2.5 Flash të shpejtë (i njohur edhe si Nano Banana) ose Gemini 3 Pro Preview të avancuar (i njohur edhe si Nano Banana Pro) me tekst, imazhe ose një kombinim të të dyjave, duke ju lejuar të krijoni, modifikoni dhe përsërisni pamjet me një kontroll të paparë:

  • Tekst, Imazh dhe Shumë Imazhe në Imazh: Gjeneroni imazhe me cilësi të lartë nga përshkrimet e tekstit, përdorni udhëzime tekstuale për të modifikuar dhe rregulluar një imazh të caktuar ose përdorni imazhe të shumta hyrëse për të kompozuar skena të reja dhe për të transferuar stile.
  • Përmirësim përsëritës: Përmirësoni imazhin tuaj në mënyrë bisedore gjatë disa kthesave, duke bërë rregullime të vogla derisa të jetë perfekt.
  • Renderim teksti me besnikëri të lartë: Gjeneroni me saktësi imazhe që përmbajnë tekst të lexueshëm dhe të vendosur mirë, ideale për logo, diagrame dhe postera.

Të gjitha imazhet e gjeneruara përfshijnë një filigran SynthID .

Gjenerimi i imazhit (tekst-në-imazh)

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

prompt = (
    "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme"
)

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[prompt],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("generated_image.png")

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
    "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme";

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("gemini-native-image.png", buffer);
      console.log("Image saved as gemini-native-image.png");
    }
  }
}

main();

Shko

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash-image",
      genai.Text("Create a picture of a nano banana dish in a " +
                 " fancy restaurant with a Gemini theme"),
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "gemini_generated_image.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class TextToImage {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme",
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("_01_generated_image.png"), blob.data().get());
          }
        }
      }
    }
  }
}

PUSHTIM

curl -s -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "parts": [
        {"text": "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme"}
      ]
    }]
  }' \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > gemini-native-image.png
Imazh i gjeneruar nga inteligjenca artificiale i një pjate nano bananeje
Imazh i gjeneruar nga inteligjenca artificiale i një pjate nano bananeje në një restorant me temë Binjakët

Redaktimi i imazhit (tekst dhe imazh në imazh)

Kujtesë : Sigurohuni që keni të drejtat e nevojshme për çdo imazh që ngarkoni. Mos gjeneroni përmbajtje që shkel të drejtat e të tjerëve, duke përfshirë video ose imazhe që mashtrojnë, ngacmojnë ose dëmtojnë. Përdorimi juaj i këtij shërbimi gjenerues të IA-së i nënshtrohet Politikës sonë të Përdorimit të Ndaluar .

Jepni një imazh dhe përdorni udhëzime tekstuale për të shtuar, hequr ose modifikuar elementë, për të ndryshuar stilin ose për të rregulluar gradimin e ngjyrave.

Shembulli i mëposhtëm demonstron ngarkimin e imazheve të koduara base64. Për imazhe të shumëfishta, ngarkesa më të mëdha dhe lloje MIME të mbështetura, kontrolloni faqen Kuptimi i imazheve .

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

prompt = (
    "Create a picture of my cat eating a nano-banana in a "
    "fancy restaurant under the Gemini constellation",
)

image = Image.open("/path/to/cat_image.png")

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[prompt, image],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("generated_image.png")

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "path/to/cat_image.png";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    { text: "Create a picture of my cat eating a nano-banana in a" +
            "fancy restaurant under the Gemini constellation" },
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image,
      },
    },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("gemini-native-image.png", buffer);
      console.log("Image saved as gemini-native-image.png");
    }
  }
}

main();

Shko

package main

import (
 "context"
 "fmt"
 "log"
 "os"
 "google.golang.org/genai"
)

func main() {

 ctx := context.Background()
 client, err := genai.NewClient(ctx, nil)
 if err != nil {
     log.Fatal(err)
 }

 imagePath := "/path/to/cat_image.png"
 imgData, _ := os.ReadFile(imagePath)

 parts := []*genai.Part{
   genai.NewPartFromText("Create a picture of my cat eating a nano-banana in a fancy restaurant under the Gemini constellation"),
   &genai.Part{
     InlineData: &genai.Blob{
       MIMEType: "image/png",
       Data:     imgData,
     },
   },
 }

 contents := []*genai.Content{
   genai.NewContentFromParts(parts, genai.RoleUser),
 }

 result, _ := client.Models.GenerateContent(
     ctx,
     "gemini-2.5-flash-image",
     contents,
 )

 for _, part := range result.Candidates[0].Content.Parts {
     if part.Text != "" {
         fmt.Println(part.Text)
     } else if part.InlineData != nil {
         imageBytes := part.InlineData.Data
         outputFilename := "gemini_generated_image.png"
         _ = os.WriteFile(outputFilename, imageBytes, 0644)
     }
 }
}

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class TextAndImageToImage {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          Content.fromParts(
              Part.fromText("""
                  Create a picture of my cat eating a nano-banana in
                  a fancy restaurant under the Gemini constellation
                  """),
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("src/main/resources/cat.jpg")),
                  "image/jpeg")),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("gemini_generated_image.png"), blob.data().get());
          }
        }
      }
    }
  }
}

PUSHTIM

IMG_PATH=/path/to/cat_image.jpeg

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {\"text\": \"'Create a picture of my cat eating a nano-banana in a fancy restaurant under the Gemini constellation\"},
            {
              \"inline_data\": {
                \"mime_type\":\"image/jpeg\",
                \"data\": \"$IMG_BASE64\"
              }
            }
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > gemini-edited-image.png
Imazh i gjeneruar nga inteligjenca artificiale i një maceje që ha banane anano
Imazh i gjeneruar nga inteligjenca artificiale i një maceje që po ha një nano banane

Redaktimi i imazhit me shumë kthesa

Vazhdoni të gjeneroni dhe modifikoni imazhe në mënyrë bisedore. Mënyra e rekomanduar për të përsëritur imazhet është biseda ose biseda me shumë kthesa. Shembulli i mëposhtëm tregon një sugjerim për të gjeneruar një infografik rreth fotosintezës.

Python

from google import genai
from google.genai import types

client = genai.Client()

chat = client.chats.create(
    model="gemini-3-pro-image-preview",
    config=types.GenerateContentConfig(
        response_modalities=['TEXT', 'IMAGE'],
        tools=[{"google_search": {}}]
    )
)

message = "Create a vibrant infographic that explains photosynthesis as if it were a recipe for a plant's favorite food. Show the \"ingredients\" (sunlight, water, CO2) and the \"finished dish\" (sugar/energy). The style should be like a page from a colorful kids' cookbook, suitable for a 4th grader."

response = chat.send_message(message)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif image:= part.as_image():
        image.save("photosynthesis.png")

Javascript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const chat = ai.chats.create({
    model: "gemini-3-pro-image-preview",
    config: {
      responseModalities: ['TEXT', 'IMAGE'],
      tools: [{googleSearch: {}}],
    },
  });

await main();

const message = "Create a vibrant infographic that explains photosynthesis as if it were a recipe for a plant's favorite food. Show the \"ingredients\" (sunlight, water, CO2) and the \"finished dish\" (sugar/energy). The style should be like a page from a colorful kids' cookbook, suitable for a 4th grader."

let response = await chat.sendMessage({message});

for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("photosynthesis.png", buffer);
      console.log("Image saved as photosynthesis.png");
    }
}

Shko

package main

import (
    "context"
    "fmt"
    "log"
    "os"

    "google.golang.org/genai"
)

func main() {
    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }
    defer client.Close()

    model := client.GenerativeModel("gemini-3-pro-image-preview")
    model.GenerationConfig = &pb.GenerationConfig{
        ResponseModalities: []pb.ResponseModality{genai.Text, genai.Image},
    }
    chat := model.StartChat()

    message := "Create a vibrant infographic that explains photosynthesis as if it were a recipe for a plant's favorite food. Show the \"ingredients\" (sunlight, water, CO2) and the \"finished dish\" (sugar/energy). The style should be like a page from a colorful kids' cookbook, suitable for a 4th grader."

    resp, err := chat.SendMessage(ctx, genai.Text(message))
    if err != nil {
        log.Fatal(err)
    }

    for _, part := range resp.Candidates[0].Content.Parts {
        if txt, ok := part.(genai.Text); ok {
            fmt.Printf("%s", string(txt))
        } else if img, ok := part.(genai.ImageData); ok {
            err := os.WriteFile("photosynthesis.png", img.Data, 0644)
            if err != nil {
                log.Fatal(err)
            }
        }
    }
}

Java

import com.google.genai.Chat;
import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.GoogleSearch;
import com.google.genai.types.ImageConfig;
import com.google.genai.types.Part;
import com.google.genai.types.RetrievalConfig;
import com.google.genai.types.Tool;
import com.google.genai.types.ToolConfig;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class MultiturnImageEditing {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {

      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .tools(Tool.builder()
              .googleSearch(GoogleSearch.builder().build())
              .build())
          .build();

      Chat chat = client.chats.create("gemini-3-pro-image-preview", config);

      GenerateContentResponse response = chat.sendMessage("""
          Create a vibrant infographic that explains photosynthesis
          as if it were a recipe for a plant's favorite food.
          Show the "ingredients" (sunlight, water, CO2)
          and the "finished dish" (sugar/energy).
          The style should be like a page from a colorful
          kids' cookbook, suitable for a 4th grader.
          """);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("photosynthesis.png"), blob.data().get());
          }
        }
      }
      // ...
    }
  }
}

PUSHTIM

curl -s -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "role": "user",
      "parts": [
        {"text": "Create a vibrant infographic that explains photosynthesis as if it were a recipe for a plants favorite food. Show the \"ingredients\" (sunlight, water, CO2) and the \"finished dish\" (sugar/energy). The style should be like a page from a colorful kids cookbook, suitable for a 4th grader."}
      ]
    }],
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"]
    }
  }' > turn1_response.json

cat turn1_response.json
# Requires jq to parse JSON response
jq -r '.candidates[0].content.parts[] | select(.inlineData) | .inlineData.data' turn1_response.json | head -1 | base64 --decode > photosynthesis.png
Infografik i gjeneruar nga inteligjenca artificiale rreth fotosintezës
Infografik i gjeneruar nga inteligjenca artificiale rreth fotosintezës

Pastaj mund të përdorni të njëjtin bisedë për të ndryshuar gjuhën në grafik në spanjisht.

Python

message = "Update this infographic to be in Spanish. Do not change any other elements of the image."
aspect_ratio = "16:9" # "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"
resolution = "2K" # "1K", "2K", "4K"

response = chat.send_message(message,
    config=types.GenerateContentConfig(
        image_config=types.ImageConfig(
            aspect_ratio=aspect_ratio,
            image_size=resolution
        ),
    ))

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif image:= part.as_image():
        image.save("photosynthesis_spanish.png")

Javascript

const message = 'Update this infographic to be in Spanish. Do not change any other elements of the image.';
const aspectRatio = '16:9';
const resolution = '2K';

let response = await chat.sendMessage({
  message,
  config: {
    responseModalities: ['TEXT', 'IMAGE'],
    imageConfig: {
      aspectRatio: aspectRatio,
      imageSize: resolution,
    },
    tools: [{googleSearch: {}}],
  },
});

for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("photosynthesis2.png", buffer);
      console.log("Image saved as photosynthesis2.png");
    }
}

Shko

message = "Update this infographic to be in Spanish. Do not change any other elements of the image."
aspect_ratio = "16:9" // "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"
resolution = "2K"     // "1K", "2K", "4K"

model.GenerationConfig.ImageConfig = &pb.ImageConfig{
    AspectRatio: aspect_ratio,
    ImageSize:   resolution,
}

resp, err = chat.SendMessage(ctx, genai.Text(message))
if err != nil {
    log.Fatal(err)
}

for _, part := range resp.Candidates[0].Content.Parts {
    if txt, ok := part.(genai.Text); ok {
        fmt.Printf("%s", string(txt))
    } else if img, ok := part.(genai.ImageData); ok {
        err := os.WriteFile("photosynthesis_spanish.png", img.Data, 0644)
        if err != nil {
            log.Fatal(err)
        }
    }
}

Java

String aspectRatio = "16:9"; // "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"
String resolution = "2K"; // "1K", "2K", "4K"

config = GenerateContentConfig.builder()
    .responseModalities("TEXT", "IMAGE")
    .imageConfig(ImageConfig.builder()
        .aspectRatio(aspectRatio)
        .imageSize(resolution)
        .build())
    .build();

response = chat.sendMessage(
    "Update this infographic to be in Spanish. " + 
    "Do not change any other elements of the image.",
    config);

for (Part part : response.parts()) {
  if (part.text().isPresent()) {
    System.out.println(part.text().get());
  } else if (part.inlineData().isPresent()) {
    var blob = part.inlineData().get();
    if (blob.data().isPresent()) {
      Files.write(Paths.get("photosynthesis_spanish.png"), blob.data().get());
    }
  }
}

PUSHTIM

# Create request2.json by combining history and new prompt
# Read model's previous response content directly into jq
jq --argjson user1 '{"role": "user", "parts": [{"text": "Create a vibrant infographic that explains photosynthesis as if it were a recipe for a plant'\''s favorite food. Show the \"ingredients\" (sunlight, water, CO2) and the \"finished dish\" (sugar/energy). The style should be like a page from a colorful kids'\'' cookbook, suitable for a 4th grader."}]}' \
  --argjson user2 '{"role": "user", "parts": [{"text": "Update this infographic to be in Spanish. Do not change any other elements of the image."}]}' \
  -f /dev/stdin turn1_response.json > request2.json <<'EOF_JQ_FILTER'
.candidates[0].content | {
  "contents": [$user1, ., $user2],
  "tools": [{"google_search": {}}],
  "generationConfig": {
    "responseModalities": ["TEXT", "IMAGE"],
    "imageConfig": {
      "aspectRatio": "16:9",
      "imageSize": "2K"
    }
  }
}
EOF_JQ_FILTER

curl -s -X POST \
"https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
-H "Content-Type: application/json" \
-d @request2.json > turn2_response.json

jq -r '.candidates[0].content.parts[] | select(.inlineData) | .inlineData.data' turn2_response.json | head -1 | base64 --decode > photosynthesis_spanish.png
Infografik i gjeneruar nga inteligjenca artificiale i fotosintezës në spanjisht
Infografik i gjeneruar nga inteligjenca artificiale i fotosintezës në spanjisht

E re me Gemini 3 Pro Image

Gemini 3 Pro Image ( gemini-3-pro-image-preview ) është një model i gjenerimit dhe redaktimit të imazheve i teknologjisë së fundit, i optimizuar për prodhimin profesional të aseteve. I projektuar për të përballuar rrjedhat më sfiduese të punës përmes arsyetimit të avancuar, ai shkëlqen në detyra komplekse krijimi dhe modifikimi me shumë kthesa.

  • Dalje me rezolucion të lartë : Aftësi të integruara gjenerimi për pamje 1K, 2K dhe 4K.
  • Renderim i avancuar i tekstit : I aftë të gjenerojë tekst të lexueshëm dhe të stilizuar për infografikë, menu, diagrame dhe asete marketingu.
  • Bazë me Kërkimin në Google : Modeli mund të përdorë Kërkimin në Google si një mjet për të verifikuar faktet dhe për të gjeneruar imazhe bazuar në të dhëna në kohë reale (p.sh., harta aktuale të motit, grafikë të aksioneve, ngjarje të fundit).
  • Modaliteti i të menduarit : Modeli përdor një proces "të të menduarit" për të arsyetuar përmes pyetjeve komplekse. Ai gjeneron "imazhe mendimi" të ndërmjetme (të dukshme në sfond, por jo të ngarkuara) për të rafinuar kompozimin përpara se të prodhojë rezultatin përfundimtar me cilësi të lartë.
  • Deri në 14 imazhe referuese : Tani mund të përzieni deri në 14 imazhe referuese për të prodhuar imazhin përfundimtar.

Përdorni deri në 14 imazhe referuese

Gemini 3 Pro Preview ju lejon të kombinoni deri në 14 imazhe referuese. Këto 14 imazhe mund të përfshijnë sa vijon:

  • Deri në 6 imazhe të objekteve me besueshmëri të lartë për t'u përfshirë në imazhin përfundimtar
  • Deri në 5 imazhe të njerëzve për të ruajtur qëndrueshmërinë e personazheve

Python

from google import genai
from google.genai import types
from PIL import Image

prompt = "An office group photo of these people, they are making funny faces."
aspect_ratio = "5:4" # "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"
resolution = "2K" # "1K", "2K", "4K"

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[
        prompt,
        Image.open('person1.png'),
        Image.open('person2.png'),
        Image.open('person3.png'),
        Image.open('person4.png'),
        Image.open('person5.png'),
    ],
    config=types.GenerateContentConfig(
        response_modalities=['TEXT', 'IMAGE'],
        image_config=types.ImageConfig(
            aspect_ratio=aspect_ratio,
            image_size=resolution
        ),
    )
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif image:= part.as_image():
        image.save("office.png")

Javascript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
      'An office group photo of these people, they are making funny faces.';
  const aspectRatio = '5:4';
  const resolution = '2K';

const contents = [
  { text: prompt },
  {
    inlineData: {
      mimeType: "image/jpeg",
      data: base64ImageFile1,
    },
  },
  {
    inlineData: {
      mimeType: "image/jpeg",
      data: base64ImageFile2,
    },
  },
  {
    inlineData: {
      mimeType: "image/jpeg",
      data: base64ImageFile3,
    },
  },
  {
    inlineData: {
      mimeType: "image/jpeg",
      data: base64ImageFile4,
    },
  },
  {
    inlineData: {
      mimeType: "image/jpeg",
      data: base64ImageFile5,
    },
  }
];

const response = await ai.models.generateContent({
    model: 'gemini-3-pro-image-preview',
    contents: contents,
    config: {
      responseModalities: ['TEXT', 'IMAGE'],
      imageConfig: {
        aspectRatio: aspectRatio,
        imageSize: resolution,
      },
    },
  });

  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("image.png", buffer);
      console.log("Image saved as image.png");
    }
  }

}

main();

Shko

package main

import (
    "context"
    "fmt"
    "log"
    "os"

    "google.golang.org/genai"
)

func main() {
    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }
    defer client.Close()

    model := client.GenerativeModel("gemini-3-pro-image-preview")
    model.GenerationConfig = &pb.GenerationConfig{
        ResponseModalities: []pb.ResponseModality{genai.Text, genai.Image},
        ImageConfig: &pb.ImageConfig{
            AspectRatio: "5:4",
            ImageSize:   "2K",
        },
    }

    img1, err := os.ReadFile("person1.png")
    if err != nil { log.Fatal(err) }
    img2, err := os.ReadFile("person2.png")
    if err != nil { log.Fatal(err) }
    img3, err := os.ReadFile("person3.png")
    if err != nil { log.Fatal(err) }
    img4, err := os.ReadFile("person4.png")
    if err != nil { log.Fatal(err) }
    img5, err := os.ReadFile("person5.png")
    if err != nil { log.Fatal(err) }

    parts := []genai.Part{
        genai.Text("An office group photo of these people, they are making funny faces."),
        genai.ImageData{MIMEType: "image/png", Data: img1},
        genai.ImageData{MIMEType: "image/png", Data: img2},
        genai.ImageData{MIMEType: "image/png", Data: img3},
        genai.ImageData{MIMEType: "image/png", Data: img4},
        genai.ImageData{MIMEType: "image/png", Data: img5},
    }

    resp, err := model.GenerateContent(ctx, parts...)
    if err != nil {
        log.Fatal(err)
    }

    for _, part := range resp.Candidates[0].Content.Parts {
        if txt, ok := part.(genai.Text); ok {
            fmt.Printf("%s", string(txt))
        } else if img, ok := part.(genai.ImageData); ok {
            err := os.WriteFile("office.png", img.Data, 0644)
            if err != nil {
                log.Fatal(err)
            }
        }
    }
}

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.ImageConfig;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class GroupPhoto {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .imageConfig(ImageConfig.builder()
              .aspectRatio("5:4")
              .imageSize("2K")
              .build())
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview",
          Content.fromParts(
              Part.fromText("An office group photo of these people, they are making funny faces."),
              Part.fromBytes(Files.readAllBytes(Path.of("person1.png")), "image/png"),
              Part.fromBytes(Files.readAllBytes(Path.of("person2.png")), "image/png"),
              Part.fromBytes(Files.readAllBytes(Path.of("person3.png")), "image/png"),
              Part.fromBytes(Files.readAllBytes(Path.of("person4.png")), "image/png"),
              Part.fromBytes(Files.readAllBytes(Path.of("person5.png")), "image/png")
          ), config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("office.png"), blob.data().get());
          }
        }
      }
    }
  }
}

PUSHTIM

IMG_PATH1=person1.png
IMG_PATH2=person2.png
IMG_PATH3=person3.png
IMG_PATH4=person4.png
IMG_PATH5=person5.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG1_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH1" 2>&1)
IMG2_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH2" 2>&1)
IMG3_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH3" 2>&1)
IMG4_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH4" 2>&1)
IMG5_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH5" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {\"text\": \"An office group photo of these people, they are making funny faces.\"},
            {\"inline_data\": {\"mime_type\":\"image/png\", \"data\": \"$IMG1_BASE64\"}},
            {\"inline_data\": {\"mime_type\":\"image/png\", \"data\": \"$IMG2_BASE64\"}},
            {\"inline_data\": {\"mime_type\":\"image/png\", \"data\": \"$IMG3_BASE64\"}},
            {\"inline_data\": {\"mime_type\":\"image/png\", \"data\": \"$IMG4_BASE64\"}},
            {\"inline_data\": {\"mime_type\":\"image/png\", \"data\": \"$IMG5_BASE64\"}}
        ]
      }],
      \"generationConfig\": {
        \"responseModalities\": [\"TEXT\", \"IMAGE\"],
        \"imageConfig\": {
          \"aspectRatio\": \"5:4\",
          \"imageSize\": \"2K\"
        }
      }
    }" | jq -r '.candidates[0].content.parts[] | select(.inlineData) | .inlineData.data' | head -1 | base64 --decode > office.png
Foto grupore zyre e gjeneruar nga inteligjenca artificiale
Foto grupore zyre e gjeneruar nga inteligjenca artificiale

Bazë me Kërkimin në Google

Përdorni mjetin e Kërkimit në Google për të gjeneruar imazhe bazuar në informacione në kohë reale, siç janë parashikimet e motit, grafikët e aksioneve ose ngjarjet e fundit.

Vini re se kur përdorni Grounding me Google Search me gjenerimin e imazheve, rezultatet e kërkimit të bazuara në imazhe nuk i kalohen modelit të gjenerimit dhe përjashtohen nga përgjigja.

Python

from google import genai
prompt = "Visualize the current weather forecast for the next 5 days in San Francisco as a clean, modern weather chart. Add a visual on what I should wear each day"
aspect_ratio = "16:9" # "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=prompt,
    config=types.GenerateContentConfig(
        response_modalities=['Text', 'Image'],
        image_config=types.ImageConfig(
            aspect_ratio=aspect_ratio,
        ),
        tools=[{"google_search": {}}]
    )
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif image:= part.as_image():
        image.save("weather.png")

Javascript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt = 'Visualize the current weather forecast for the next 5 days in San Francisco as a clean, modern weather chart. Add a visual on what I should wear each day';
  const aspectRatio = '16:9';
  const resolution = '2K';

const response = await ai.models.generateContent({
    model: 'gemini-3-pro-image-preview',
    contents: prompt,
    config: {
      responseModalities: ['TEXT', 'IMAGE'],
      imageConfig: {
        aspectRatio: aspectRatio,
        imageSize: resolution,
      },
    },
  });

  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("image.png", buffer);
      console.log("Image saved as image.png");
    }
  }

}

main();

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.GoogleSearch;
import com.google.genai.types.ImageConfig;
import com.google.genai.types.Part;
import com.google.genai.types.Tool;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class SearchGrounding {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .imageConfig(ImageConfig.builder()
              .aspectRatio("16:9")
              .build())
          .tools(Tool.builder()
              .googleSearch(GoogleSearch.builder().build())
              .build())
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview", """
              Visualize the current weather forecast for the next 5 days 
              in San Francisco as a clean, modern weather chart. 
              Add a visual on what I should wear each day
              """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("weather.png"), blob.data().get());
          }
        }
      }
    }
  }
}

PUSHTIM

curl -s -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{"parts": [{"text": "Visualize the current weather forecast for the next 5 days in San Francisco as a clean, modern weather chart. Add a visual on what I should wear each day"}]}],
    "tools": [{"google_search": {}}],
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"],
      "imageConfig": {"aspectRatio": "16:9"}
    }
  }' | jq -r '.candidates[0].content.parts[] | select(.inlineData) | .inlineData.data' | head -1 | base64 --decode > weather.png
Grafik moti pesë-ditor i gjeneruar nga inteligjenca artificiale për San Franciskon
Grafik moti pesë-ditor i gjeneruar nga inteligjenca artificiale për San Franciskon

Përgjigja përfshin groundingMetadata e cila përmban fushat e mëposhtme të kërkuara:

  • searchEntryPoint : Përmban HTML dhe CSS për të paraqitur sugjerimet e kërkuara të kërkimit.
  • groundingChunks : Kthen 3 burimet kryesore të internetit të përdorura për të tokëzuar imazhin e gjeneruar

Gjeneroni imazhe me rezolucion deri në 4K

Gemini 3 Pro Image gjeneron imazhe 1K si parazgjedhje, por mund të prodhojë edhe imazhe 2K dhe 4K. Për të gjeneruar asete me rezolucion më të lartë, specifikoni madhësinë e image_sizegeneration_config .

Duhet të përdorni një 'K' të madhe (p.sh., 1K, 2K, 4K). Parametrat me shkronja të vogla (p.sh., 1k) do të refuzohen.

Python

from google import genai
from google.genai import types

prompt = "Da Vinci style anatomical sketch of a dissected Monarch butterfly. Detailed drawings of the head, wings, and legs on textured parchment with notes in English." 
aspect_ratio = "1:1" # "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"
resolution = "1K" # "1K", "2K", "4K"

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=prompt,
    config=types.GenerateContentConfig(
        response_modalities=['TEXT', 'IMAGE'],
        image_config=types.ImageConfig(
            aspect_ratio=aspect_ratio,
            image_size=resolution
        ),
    )
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif image:= part.as_image():
        image.save("butterfly.png")

Javascript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
      'Da Vinci style anatomical sketch of a dissected Monarch butterfly. Detailed drawings of the head, wings, and legs on textured parchment with notes in English.';
  const aspectRatio = '1:1';
  const resolution = '1K';

  const response = await ai.models.generateContent({
    model: 'gemini-3-pro-image-preview',
    contents: prompt,
    config: {
      responseModalities: ['TEXT', 'IMAGE'],
      imageConfig: {
        aspectRatio: aspectRatio,
        imageSize: resolution,
      },
    },
  });

  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("image.png", buffer);
      console.log("Image saved as image.png");
    }
  }

}

main();

Shko

package main

import (
    "context"
    "fmt"
    "log"
    "os"

    "google.golang.org/genai"
)

func main() {
    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }
    defer client.Close()

    model := client.GenerativeModel("gemini-3-pro-image-preview")
    model.GenerationConfig = &pb.GenerationConfig{
        ResponseModalities: []pb.ResponseModality{genai.Text, genai.Image},
        ImageConfig: &pb.ImageConfig{
            AspectRatio: "1:1",
            ImageSize:   "1K",
        },
    }

    prompt := "Da Vinci style anatomical sketch of a dissected Monarch butterfly. Detailed drawings of the head, wings, and legs on textured parchment with notes in English."
    resp, err := model.GenerateContent(ctx, genai.Text(prompt))
    if err != nil {
        log.Fatal(err)
    }

    for _, part := range resp.Candidates[0].Content.Parts {
        if txt, ok := part.(genai.Text); ok {
            fmt.Printf("%s", string(txt))
        } else if img, ok := part.(genai.ImageData); ok {
            err := os.WriteFile("butterfly.png", img.Data, 0644)
            if err != nil {
                log.Fatal(err)
            }
        }
    }
}

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.GoogleSearch;
import com.google.genai.types.ImageConfig;
import com.google.genai.types.Part;
import com.google.genai.types.Tool;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class HiRes {
    public static void main(String[] args) throws IOException {

      try (Client client = new Client()) {
        GenerateContentConfig config = GenerateContentConfig.builder()
            .responseModalities("TEXT", "IMAGE")
            .imageConfig(ImageConfig.builder()
                .aspectRatio("16:9")
                .imageSize("4K")
                .build())
            .build();

        GenerateContentResponse response = client.models.generateContent(
            "gemini-3-pro-image-preview", """
              Da Vinci style anatomical sketch of a dissected Monarch butterfly.
              Detailed drawings of the head, wings, and legs on textured
              parchment with notes in English.
              """,
            config);

        for (Part part : response.parts()) {
          if (part.text().isPresent()) {
            System.out.println(part.text().get());
          } else if (part.inlineData().isPresent()) {
            var blob = part.inlineData().get();
            if (blob.data().isPresent()) {
              Files.write(Paths.get("butterfly.png"), blob.data().get());
            }
          }
        }
      }
    }
}

PUSHTIM

curl -s -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{"parts": [{"text": "Da Vinci style anatomical sketch of a dissected Monarch butterfly. Detailed drawings of the head, wings, and legs on textured parchment with notes in English."}]}],
    "tools": [{"google_search": {}}],
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"],
      "imageConfig": {"aspectRatio": "1:1", "imageSize": "1K"}
    }
  }' | jq -r '.candidates[0].content.parts[] | select(.inlineData) | .inlineData.data' | head -1 | base64 --decode > butterfly.png

Më poshtë është një shembull imazhi i gjeneruar nga kjo kërkesë:

Skicë anatomike në stilin Da Vinçi të gjeneruar nga inteligjenca artificiale e një fluture Monarch të disektuar.
Skicë anatomike në stilin Da Vinçi të gjeneruar nga inteligjenca artificiale e një fluture Monarch të disektuar.

Procesi i të menduarit

Modeli i Parapamjes së Imazhit Gemini 3 Pro është një model i të menduarit dhe përdor një proces arsyetimi ("Thinking") për kërkesa komplekse. Kjo veçori aktivizohet si parazgjedhje dhe nuk mund të çaktivizohet në API. Për të mësuar më shumë rreth procesit të të menduarit, shihni udhëzuesin Gemini Thinking .

Modeli gjeneron deri në dy imazhe të ndërmjetme për të testuar përbërjen dhe logjikën. Imazhi i fundit brenda Thinking është gjithashtu imazhi përfundimtar i renderuar.

Mund të kontrolloni mendimet që çojnë në imazhin përfundimtar që po prodhohet.

Python

for part in response.parts:
    if part.thought:
        if part.text:
            print(part.text)
        elif image:= part.as_image():
            image.show()

Javascript

for (const part of response.candidates[0].content.parts) {
  if (part.thought) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, 'base64');
      fs.writeFileSync('image.png', buffer);
      console.log('Image saved as image.png');
    }
  }
}

Nënshkrimet e Mendimit

Nënshkrimet e mendimit janë përfaqësime të koduara të procesit të brendshëm të të menduarit të modelit dhe përdoren për të ruajtur kontekstin e arsyetimit në ndërveprimet me shumë kthesa. Të gjitha përgjigjet përfshijnë një fushë thought_signature . Si rregull i përgjithshëm, nëse merrni një nënshkrim mendimi në një përgjigje modeli, duhet ta kaloni atë pikërisht ashtu siç e keni marrë kur keni dërguar historikun e bisedës në kthesën tjetër. Mosqarkullimi i nënshkrimeve të mendimit mund të shkaktojë dështimin e përgjigjes. Kontrolloni dokumentacionin e nënshkrimit të mendimit për më shumë shpjegime të nënshkrimeve në përgjithësi.

Ja se si funksionojnë nënshkrimet e mendimit:

  • Të gjitha pjesët inline_data me mimetype të imazhit që janë pjesë e përgjigjes duhet të kenë nënshkrim.
  • Nëse ka disa pjesë teksti në fillim (para ndonjë imazhi) menjëherë pas mendimeve, pjesa e parë e tekstit duhet të ketë gjithashtu një nënshkrim.
  • Mendimet nuk kanë nënshkrime; Nëse pjesët inline_data me mimetype të imazhit janë pjesë e mendimeve, ato nuk do të kenë nënshkrime.

Kodi i mëposhtëm tregon një shembull se ku përfshihen nënshkrimet e mendimit:

[
  {
    "inline_data": {
      "data": "<base64_image_data_0>",
      "mime_type": "image/png"
    },
    "thought": true // Thoughts don't have signatures
  },
  {
    "inline_data": {
      "data": "<base64_image_data_1>",
      "mime_type": "image/png"
    },
    "thought": true // Thoughts don't have signatures
  },
  {
    "inline_data": {
      "data": "<base64_image_data_2>",
      "mime_type": "image/png"
    },
    "thought": true // Thoughts don't have signatures
  },
  {
    "text": "Here is a step-by-step guide to baking macarons, presented in three separate images.\n\n### Step 1: Piping the Batter\n\nThe first step after making your macaron batter is to pipe it onto a baking sheet. This requires a steady hand to create uniform circles.\n\n",
    "thought_signature": "<Signature_A>" // The first non-thought part always has a signature
  },
  {
    "inline_data": {
      "data": "<base64_image_data_3>",
      "mime_type": "image/png"
    },
    "thought_signature": "<Signature_B>" // All image parts have a signatures
  },
  {
    "text": "\n\n### Step 2: Baking and Developing Feet\n\nOnce piped, the macarons are baked in the oven. A key sign of a successful bake is the development of \"feet\"—the ruffled edge at the base of each macaron shell.\n\n"
    // Follow-up text parts don't have signatures
  },
  {
    "inline_data": {
      "data": "<base64_image_data_4>",
      "mime_type": "image/png"
    },
    "thought_signature": "<Signature_C>" // All image parts have a signatures
  },
  {
    "text": "\n\n### Step 3: Assembling the Macaron\n\nThe final step is to pair the cooled macaron shells by size and sandwich them together with your desired filling, creating the classic macaron dessert.\n\n"
  },
  {
    "inline_data": {
      "data": "<base64_image_data_5>",
      "mime_type": "image/png"
    },
    "thought_signature": "<Signature_D>" // All image parts have a signatures
  }
]

Mënyra të tjera të gjenerimit të imazheve

Gemini mbështet mënyra të tjera të ndërveprimit me imazhe bazuar në strukturën dhe kontekstin e shpejtë, duke përfshirë:

  • Tekst në imazh(e) dhe tekst (të ndërthurur): Nxjerr imazhe me tekst të lidhur.
    • Shembull i kërkesës: "Gjeneroni një recetë të ilustruar për një paella."
  • Imazh(e) dhe tekst në imazh(e) dhe tekst (të ndërthurura) : Përdor imazhet dhe tekstin e futur për të krijuar imazhe dhe tekst të rinj të lidhur.
    • Shembull i kërkesës: (Me një imazh të një dhome të mobiluar) "Çfarë ngjyrash të tjera divanesh do të funksiononin në hapësirën time? A mund ta përditësoni imazhin?"

Gjeneroni imazhe në grup

Nëse duhet të gjeneroni shumë imazhe, mund të përdorni Batch API . Do të merrni limite më të larta shpejtësie në këmbim të një përpunimi deri në 24 orë.

Kontrolloni dokumentacionin e gjenerimit të imazheve Batch API dhe librin e gatimit për shembuj dhe kod të imazheve Batch API.

Udhëzues dhe strategji nxitëse

Zotërimi i gjenerimit të imazheve fillon me një parim themelor:

Përshkruani skenën, mos renditni vetëm fjalë kyçe. Pika e fortë e modelit është kuptimi i thellë i gjuhës. Një paragraf narrativ dhe përshkrues pothuajse gjithmonë do të prodhojë një imazh më të mirë dhe më koherent sesa një listë fjalësh të shkëputura nga njëra-tjetra.

Udhëzime për gjenerimin e imazheve

Strategjitë e mëposhtme do t'ju ndihmojnë të krijoni sugjerime efektive për të gjeneruar pikërisht imazhet që po kërkoni.

1. Skena fotorealiste

Për imazhe realiste, përdorni terma fotografikë. Përmendni këndet e kamerave, llojet e lenteve, ndriçimin dhe detajet e imëta për ta udhëhequr modelin drejt një rezultati fotorealist.

Shabllon

A photorealistic [shot type] of [subject], [action or expression], set in
[environment]. The scene is illuminated by [lighting description], creating
a [mood] atmosphere. Captured with a [camera/lens details], emphasizing
[key textures and details]. The image should be in a [aspect ratio] format.

Nxitje

A photorealistic close-up portrait of an elderly Japanese ceramicist with
deep, sun-etched wrinkles and a warm, knowing smile. He is carefully
inspecting a freshly glazed tea bowl. The setting is his rustic,
sun-drenched workshop. The scene is illuminated by soft, golden hour light
streaming through a window, highlighting the fine texture of the clay.
Captured with an 85mm portrait lens, resulting in a soft, blurred background
(bokeh). The overall mood is serene and masterful. Vertical portrait
orientation.

Python

from google import genai
from google.genai import types    

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents="A photorealistic close-up portrait of an elderly Japanese ceramicist with deep, sun-etched wrinkles and a warm, knowing smile. He is carefully inspecting a freshly glazed tea bowl. The setting is his rustic, sun-drenched workshop with pottery wheels and shelves of clay pots in the background. The scene is illuminated by soft, golden hour light streaming through a window, highlighting the fine texture of the clay and the fabric of his apron. Captured with an 85mm portrait lens, resulting in a soft, blurred background (bokeh). The overall mood is serene and masterful.",
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("photorealistic_example.png")

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class PhotorealisticScene {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          """
          A photorealistic close-up portrait of an elderly Japanese ceramicist
          with deep, sun-etched wrinkles and a warm, knowing smile. He is
          carefully inspecting a freshly glazed tea bowl. The setting is his
          rustic, sun-drenched workshop with pottery wheels and shelves of
          clay pots in the background. The scene is illuminated by soft,
          golden hour light streaming through a window, highlighting the
          fine texture of the clay and the fabric of his apron. Captured
          with an 85mm portrait lens, resulting in a soft, blurred
          background (bokeh). The overall mood is serene and masterful.
          """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("photorealistic_example.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
    "A photorealistic close-up portrait of an elderly Japanese ceramicist with deep, sun-etched wrinkles and a warm, knowing smile. He is carefully inspecting a freshly glazed tea bowl. The setting is his rustic, sun-drenched workshop with pottery wheels and shelves of clay pots in the background. The scene is illuminated by soft, golden hour light streaming through a window, highlighting the fine texture of the clay and the fabric of his apron. Captured with an 85mm portrait lens, resulting in a soft, blurred background (bokeh). The overall mood is serene and masterful.";

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("photorealistic_example.png", buffer);
      console.log("Image saved as photorealistic_example.png");
    }
  }
}

main();

Shko

package main

import (
    "context"
    "fmt"
    "log"
    "os"
    "google.golang.org/genai"
)

func main() {

    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    result, _ := client.Models.GenerateContent(
        ctx,
        "gemini-2.5-flash-image",
        genai.Text("A photorealistic close-up portrait of an elderly Japanese ceramicist with deep, sun-etched wrinkles and a warm, knowing smile. He is carefully inspecting a freshly glazed tea bowl. The setting is his rustic, sun-drenched workshop with pottery wheels and shelves of clay pots in the background. The scene is illuminated by soft, golden hour light streaming through a window, highlighting the fine texture of the clay and the fabric of his apron. Captured with an 85mm portrait lens, resulting in a soft, blurred background (bokeh). The overall mood is serene and masterful."),
    )

    for _, part := range result.Candidates[0].Content.Parts {
        if part.Text != "" {
            fmt.Println(part.Text)
        } else if part.InlineData != nil {
            imageBytes := part.InlineData.Data
            outputFilename := "photorealistic_example.png"
            _ = os.WriteFile(outputFilename, imageBytes, 0644)
        }
    }
}

PUSHTIM

curl -s -X POST
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "parts": [
        {"text": "A photorealistic close-up portrait of an elderly Japanese ceramicist with deep, sun-etched wrinkles and a warm, knowing smile. He is carefully inspecting a freshly glazed tea bowl. The setting is his rustic, sun-drenched workshop with pottery wheels and shelves of clay pots in the background. The scene is illuminated by soft, golden hour light streaming through a window, highlighting the fine texture of the clay and the fabric of his apron. Captured with an 85mm portrait lens, resulting in a soft, blurred background (bokeh). The overall mood is serene and masterful."}
      ]
    }]
  }' \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > photorealistic_example.png
Një portret fotorealist nga afër i një qeramisti të moshuar japonez...
Një portret fotorealist nga afër i një qeramisti të moshuar japonez...

2. Ilustrime dhe afishe të stilizuara

Për të krijuar afishe, ikona ose asete, ji i qartë në lidhje me stilin dhe kërko një sfond transparent.

Shabllon

A [style] sticker of a [subject], featuring [key characteristics] and a
[color palette]. The design should have [line style] and [shading style].
The background must be transparent.

Nxitje

A kawaii-style sticker of a happy red panda wearing a tiny bamboo hat. It's
munching on a green bamboo leaf. The design features bold, clean outlines,
simple cel-shading, and a vibrant color palette. The background must be white.

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents="A kawaii-style sticker of a happy red panda wearing a tiny bamboo hat. It's munching on a green bamboo leaf. The design features bold, clean outlines, simple cel-shading, and a vibrant color palette. The background must be white.",
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("red_panda_sticker.png")

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class StylizedIllustration {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          """
          A kawaii-style sticker of a happy red panda wearing a tiny bamboo
          hat. It's munching on a green bamboo leaf. The design features
          bold, clean outlines, simple cel-shading, and a vibrant color
          palette. The background must be white.
          """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("red_panda_sticker.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
    "A kawaii-style sticker of a happy red panda wearing a tiny bamboo hat. It's munching on a green bamboo leaf. The design features bold, clean outlines, simple cel-shading, and a vibrant color palette. The background must be white.";

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("red_panda_sticker.png", buffer);
      console.log("Image saved as red_panda_sticker.png");
    }
  }
}

main();

Shko

package main

import (
    "context"
    "fmt"
    "log"
    "os"
    "google.golang.org/genai"
)

func main() {

    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    result, _ := client.Models.GenerateContent(
        ctx,
        "gemini-2.5-flash-image",
        genai.Text("A kawaii-style sticker of a happy red panda wearing a tiny bamboo hat. It's munching on a green bamboo leaf. The design features bold, clean outlines, simple cel-shading, and a vibrant color palette. The background must be white."),
    )

    for _, part := range result.Candidates[0].Content.Parts {
        if part.Text != "" {
            fmt.Println(part.Text)
        } else if part.InlineData != nil {
            imageBytes := part.InlineData.Data
            outputFilename := "red_panda_sticker.png"
            _ = os.WriteFile(outputFilename, imageBytes, 0644)
        }
    }
}

PUSHTIM

curl -s -X POST
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "parts": [
        {"text": "A kawaii-style sticker of a happy red panda wearing a tiny bamboo hat. It'"'"'s munching on a green bamboo leaf. The design features bold, clean outlines, simple cel-shading, and a vibrant color palette. The background must be white."}
      ]
    }]
  }' \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > red_panda_sticker.png
Një ngjitëse në stilin kawaii e një të kuqeje të lumtur...
Një ngjitëse në stilin kawaii e një panda të kuqe të lumtur...

3. Tekst i saktë në imazhe

Gemini shkëlqen në paraqitjen e tekstit. Jini të qartë në lidhje me tekstin, stilin e shkronjave (në mënyrë përshkruese) dhe dizajnin e përgjithshëm. Përdorni Gemini 3 Pro Image Preview për prodhim profesional të aseteve.

Shabllon

Create a [image type] for [brand/concept] with the text "[text to render]"
in a [font style]. The design should be [style description], with a
[color scheme].

Nxitje

Create a modern, minimalist logo for a coffee shop called 'The Daily Grind'. The text should be in a clean, bold, sans-serif font. The color scheme is black and white. Put the logo in a circle. Use a coffee bean in a clever way.

Python

from google import genai
from google.genai import types    

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents="Create a modern, minimalist logo for a coffee shop called 'The Daily Grind'. The text should be in a clean, bold, sans-serif font. The color scheme is black and white. Put the logo in a circle. Use a coffee bean in a clever way.",
    config=types.GenerateContentConfig(
        image_config=types.ImageConfig(
            aspect_ratio="1:1",
        )
    )
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("logo_example.jpg")

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;
import com.google.genai.types.ImageConfig;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class AccurateTextInImages {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .imageConfig(ImageConfig.builder()
              .aspectRatio("1:1")
              .build())
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview",
          """
          Create a modern, minimalist logo for a coffee shop called 'The Daily Grind'. The text should be in a clean, bold, sans-serif font. The color scheme is black and white. Put the logo in a circle. Use a coffee bean in a clever way.
          """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("logo_example.jpg"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
    "Create a modern, minimalist logo for a coffee shop called 'The Daily Grind'. The text should be in a clean, bold, sans-serif font. The color scheme is black and white. Put the logo in a circle. Use a coffee bean in a clever way.";

  const response = await ai.models.generateContent({
    model: "gemini-3-pro-image-preview",
    contents: prompt,
    config: {
      imageConfig: {
        aspectRatio: "1:1",
      },
    },
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("logo_example.jpg", buffer);
      console.log("Image saved as logo_example.jpg");
    }
  }
}

main();

Shko

package main

import (
    "context"
    "fmt"
    "log"
    "os"
    "google.golang.org/genai"
)

func main() {

    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    result, _ := client.Models.GenerateContent(
        ctx,
        "gemini-3-pro-image-preview",
        genai.Text("Create a modern, minimalist logo for a coffee shop called 'The Daily Grind'. The text should be in a clean, bold, sans-serif font. The color scheme is black and white. Put the logo in a circle. Use a coffee bean in a clever way."),
        &genai.GenerateContentConfig{
            ImageConfig: &genai.ImageConfig{
              AspectRatio: "1:1",
            },
        },
    )

    for _, part := range result.Candidates[0].Content.Parts {
        if part.Text != "" {
            fmt.Println(part.Text)
        } else if part.InlineData != nil {
            imageBytes := part.InlineData.Data
            outputFilename := "logo_example.jpg"
            _ = os.WriteFile(outputFilename, imageBytes, 0644)
        }
    }
}

PUSHTIM

curl -s -X POST
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "parts": [
        {"text": "Create a modern, minimalist logo for a coffee shop called '"'"'The Daily Grind'"'"'. The text should be in a clean, bold, sans-serif font. The color scheme is black and white. Put the logo in a circle. Use a coffee bean in a clever way."}
      ]
    }],
    "generationConfig": {
      "imageConfig": {
        "aspectRatio": "1:1"
      }
    }
  }' \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > logo_example.jpg
Krijo një logo moderne dhe minimaliste për një kafene të quajtur 'The Daily Grind'...
Krijo një logo moderne dhe minimaliste për një kafene të quajtur 'The Daily Grind'...

4. Makete produktesh dhe fotografi komerciale

Perfekt për krijimin e fotove të pastra dhe profesionale të produkteve për tregtinë elektronike, reklamimin ose krijimin e markave.

Shabllon

A high-resolution, studio-lit product photograph of a [product description]
on a [background surface/description]. The lighting is a [lighting setup,
e.g., three-point softbox setup] to [lighting purpose]. The camera angle is
a [angle type] to showcase [specific feature]. Ultra-realistic, with sharp
focus on [key detail]. [Aspect ratio].

Nxitje

A high-resolution, studio-lit product photograph of a minimalist ceramic
coffee mug in matte black, presented on a polished concrete surface. The
lighting is a three-point softbox setup designed to create soft, diffused
highlights and eliminate harsh shadows. The camera angle is a slightly
elevated 45-degree shot to showcase its clean lines. Ultra-realistic, with
sharp focus on the steam rising from the coffee. Square image.

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents="A high-resolution, studio-lit product photograph of a minimalist ceramic coffee mug in matte black, presented on a polished concrete surface. The lighting is a three-point softbox setup designed to create soft, diffused highlights and eliminate harsh shadows. The camera angle is a slightly elevated 45-degree shot to showcase its clean lines. Ultra-realistic, with sharp focus on the steam rising from the coffee. Square image.",
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("product_mockup.png")

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class ProductMockup {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          """
          A high-resolution, studio-lit product photograph of a minimalist
          ceramic coffee mug in matte black, presented on a polished
          concrete surface. The lighting is a three-point softbox setup
          designed to create soft, diffused highlights and eliminate harsh
          shadows. The camera angle is a slightly elevated 45-degree shot
          to showcase its clean lines. Ultra-realistic, with sharp focus
          on the steam rising from the coffee. Square image.
          """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("product_mockup.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
    "A high-resolution, studio-lit product photograph of a minimalist ceramic coffee mug in matte black, presented on a polished concrete surface. The lighting is a three-point softbox setup designed to create soft, diffused highlights and eliminate harsh shadows. The camera angle is a slightly elevated 45-degree shot to showcase its clean lines. Ultra-realistic, with sharp focus on the steam rising from the coffee. Square image.";

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("product_mockup.png", buffer);
      console.log("Image saved as product_mockup.png");
    }
  }
}

main();

Shko

package main

import (
    "context"
    "fmt"
    "log"
    "os"
    "google.golang.org/genai"
)

func main() {

    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    result, _ := client.Models.GenerateContent(
        ctx,
        "gemini-2.5-flash-image",
        genai.Text("A high-resolution, studio-lit product photograph of a minimalist ceramic coffee mug in matte black, presented on a polished concrete surface. The lighting is a three-point softbox setup designed to create soft, diffused highlights and eliminate harsh shadows. The camera angle is a slightly elevated 45-degree shot to showcase its clean lines. Ultra-realistic, with sharp focus on the steam rising from the coffee. Square image."),
    )

    for _, part := range result.Candidates[0].Content.Parts {
        if part.Text != "" {
            fmt.Println(part.Text)
        } else if part.InlineData != nil {
            imageBytes := part.InlineData.Data
            outputFilename := "product_mockup.png"
            _ = os.WriteFile(outputFilename, imageBytes, 0644)
        }
    }
}

PUSHTIM

curl -s -X POST
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "parts": [
        {"text": "A high-resolution, studio-lit product photograph of a minimalist ceramic coffee mug in matte black, presented on a polished concrete surface. The lighting is a three-point softbox setup designed to create soft, diffused highlights and eliminate harsh shadows. The camera angle is a slightly elevated 45-degree shot to showcase its clean lines. Ultra-realistic, with sharp focus on the steam rising from the coffee. Square image."}
      ]
    }]
  }' \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > product_mockup.png
Një fotografi produkti me rezolucion të lartë, e ndriçuar nga studioja, e një filxhani minimalist kafeje prej qeramike...
Një fotografi produkti me rezolucion të lartë, e ndriçuar nga studioja, e një filxhani minimalist kafeje prej qeramike...

5. Dizajn minimalist dhe negativ i hapësirës

Shkëlqyeshëm për krijimin e sfondeve për faqet e internetit, prezantimet ose materialet e marketingut ku teksti do të mbivendoset.

Shabllon

A minimalist composition featuring a single [subject] positioned in the
[bottom-right/top-left/etc.] of the frame. The background is a vast, empty
[color] canvas, creating significant negative space. Soft, subtle lighting.
[Aspect ratio].

Nxitje

A minimalist composition featuring a single, delicate red maple leaf
positioned in the bottom-right of the frame. The background is a vast, empty
off-white canvas, creating significant negative space for text. Soft,
diffused lighting from the top left. Square image.

Python

from google import genai
from google.genai import types    

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents="A minimalist composition featuring a single, delicate red maple leaf positioned in the bottom-right of the frame. The background is a vast, empty off-white canvas, creating significant negative space for text. Soft, diffused lighting from the top left. Square image.",
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("minimalist_design.png")

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class MinimalistDesign {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          """
          A minimalist composition featuring a single, delicate red maple
          leaf positioned in the bottom-right of the frame. The background
          is a vast, empty off-white canvas, creating significant negative
          space for text. Soft, diffused lighting from the top left.
          Square image.
          """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("minimalist_design.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
    "A minimalist composition featuring a single, delicate red maple leaf positioned in the bottom-right of the frame. The background is a vast, empty off-white canvas, creating significant negative space for text. Soft, diffused lighting from the top left. Square image.";

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("minimalist_design.png", buffer);
      console.log("Image saved as minimalist_design.png");
    }
  }
}

main();

Shko

package main

import (
    "context"
    "fmt"
    "log"
    "os"
    "google.golang.org/genai"
)

func main() {

    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    result, _ := client.Models.GenerateContent(
        ctx,
        "gemini-2.5-flash-image",
        genai.Text("A minimalist composition featuring a single, delicate red maple leaf positioned in the bottom-right of the frame. The background is a vast, empty off-white canvas, creating significant negative space for text. Soft, diffused lighting from the top left. Square image."),
    )

    for _, part := range result.Candidates[0].Content.Parts {
        if part.Text != "" {
            fmt.Println(part.Text)
        } else if part.InlineData != nil {
            imageBytes := part.InlineData.Data
            outputFilename := "minimalist_design.png"
            _ = os.WriteFile(outputFilename, imageBytes, 0644)
        }
    }
}

PUSHTIM

curl -s -X POST
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "parts": [
        {"text": "A minimalist composition featuring a single, delicate red maple leaf positioned in the bottom-right of the frame. The background is a vast, empty off-white canvas, creating significant negative space for text. Soft, diffused lighting from the top left. Square image."}
      ]
    }]
  }' \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > minimalist_design.png
Një kompozim minimalist që paraqet një gjethe të vetme panje të kuqe delikate...
Një kompozim minimalist që paraqet një gjethe të vetme panje të kuqe delikate...

6. Art sekuencial (Paneli komik / Storyboard)

Ndërtohet mbi qëndrueshmërinë e personazheve dhe përshkrimin e skenës për të krijuar panele për rrëfim vizual. Për saktësi me tekstin dhe aftësinë e rrëfimit, këto sugjerime funksionojnë më së miri me Gemini 3 Pro Image Preview.

Shabllon

Make a 3 panel comic in a [style]. Put the character in a [type of scene].

Nxitje

Make a 3 panel comic in a gritty, noir art style with high-contrast black and white inks. Put the character in a humurous scene.

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

image_input = Image.open('/path/to/your/man_in_white_glasses.jpg')
text_input = "Make a 3 panel comic in a gritty, noir art style with high-contrast black and white inks. Put the character in a humurous scene."

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[text_input, image_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("comic_panel.jpg")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class ComicPanel {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview",
          Content.fromParts(
              Part.fromText("""
                  Make a 3 panel comic in a gritty, noir art style with high-contrast black and white inks. Put the character in a humurous scene.
                  """),
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/man_in_white_glasses.jpg")),
                  "image/jpeg")),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("comic_panel.jpg"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "/path/to/your/man_in_white_glasses.jpg";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    {text: "Make a 3 panel comic in a gritty, noir art style with high-contrast black and white inks. Put the character in a humurous scene."},
    {
      inlineData: {
        mimeType: "image/jpeg",
        data: base64Image,
      },
    },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-3-pro-image-preview",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("comic_panel.jpg", buffer);
      console.log("Image saved as comic_panel.jpg");
    }
  }
}

main();

Shko

package main

import (
    "context"
    "fmt"
    "log"
    "os"
    "google.golang.org/genai"
)

func main() {

    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    imagePath := "/path/to/your/man_in_white_glasses.jpg"
    imgData, _ := os.ReadFile(imagePath)

    parts := []*genai.Part{
      genai.NewPartFromText("Make a 3 panel comic in a gritty, noir art style with high-contrast black and white inks. Put the character in a humurous scene."),
      &genai.Part{
        InlineData: &genai.Blob{
          MIMEType: "image/jpeg",
          Data:     imgData,
        },
      },
    }

    contents := []*genai.Content{
      genai.NewContentFromParts(parts, genai.RoleUser),
    }

    result, _ := client.Models.GenerateContent(
        ctx,
        "gemini-3-pro-image-preview",
        contents,
    )

    for _, part := range result.Candidates[0].Content.Parts {
        if part.Text != "" {
            fmt.Println(part.Text)
        } else if part.InlineData != nil {
            imageBytes := part.InlineData.Data
            outputFilename := "comic_panel.jpg"
            _ = os.WriteFile(outputFilename, imageBytes, 0644)
        }
    }
}

PUSHTIM

IMG_PATH=/path/to/your/man_in_white_glasses.jpg

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -s -X POST
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d "{
    \"contents\": [{
      \"parts\": [
        {\"text\": \"Make a 3 panel comic in a gritty, noir art style with high-contrast black and white inks. Put the character in a humurous scene.\"},
        {\"inline_data\": {\"mime_type\":\"image/jpeg\", \"data\": \"$IMG_BASE64\"}}
      ]
    }]
  }" \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > comic_panel.jpg

Hyrje

Prodhimi

Burrë me syze të bardha
Fut imazhin
Krijo një komik me 3 panele në një stil arti të ashpër, noir...
Krijo një komik me 3 panele në një stil arti të ashpër, noir...

Përdorni Kërkimin në Google për të gjeneruar imazhe bazuar në informacione të fundit ose në kohë reale. Kjo është e dobishme për lajmet, motin dhe tema të tjera të ndjeshme ndaj kohës.

Nxitje

Make a simple but stylish graphic of last night's Arsenal game in the Champion's League

Python

from google import genai
from google.genai import types
prompt = "Make a simple but stylish graphic of last night's Arsenal game in the Champion's League"
aspect_ratio = "16:9" # "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=prompt,
    config=types.GenerateContentConfig(
        response_modalities=['Text', 'Image'],
        image_config=types.ImageConfig(
            aspect_ratio=aspect_ratio,
        ),
        tools=[{"google_search": {}}]
    )
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif image:= part.as_image():
        image.save("football-score.jpg")

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.GoogleSearch;
import com.google.genai.types.ImageConfig;
import com.google.genai.types.Part;
import com.google.genai.types.Tool;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class SearchGrounding {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .imageConfig(ImageConfig.builder()
              .aspectRatio("16:9")
              .build())
          .tools(Tool.builder()
              .googleSearch(GoogleSearch.builder().build())
              .build())
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview", """
              Make a simple but stylish graphic of last night's Arsenal game in the Champion's League
              """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("football-score.jpg"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt = "Make a simple but stylish graphic of last night's Arsenal game in the Champion's League";

  const aspectRatio = '16:9';
  const resolution = '2K';

const response = await ai.models.generateContent({
    model: 'gemini-3-pro-image-preview',
    contents: prompt,
    config: {
      responseModalities: ['TEXT', 'IMAGE'],
      imageConfig: {
        aspectRatio: aspectRatio,
        imageSize: resolution,
      },
      tools: [{"google_search": {}}],
    },
  });

  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("football-score.jpg", buffer);
      console.log("Image saved as football-score.jpg");
    }
  }

}

main();

Shko

package main

import (
    "context"
    "fmt"
    "log"
    "os"

    "google.golang.org/genai"
    pb "google.golang.org/genai/schema"
)

func main() {
    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }
    defer client.Close()

    model := client.GenerativeModel("gemini-3-pro-image-preview")
    model.Tools = []*pb.Tool{
        pb.NewGoogleSearchTool(),
    }
    model.GenerationConfig = &pb.GenerationConfig{
        ResponseModalities: []pb.ResponseModality{genai.Text, genai.Image},
        ImageConfig: &pb.ImageConfig{
            AspectRatio: "16:9",
        },
    }

    prompt := "Make a simple but stylish graphic of last night's Arsenal game in the Champion's League"
    resp, err := model.GenerateContent(ctx, genai.Text(prompt))
    if err != nil {
        log.Fatal(err)
    }

    for _, part := range resp.Candidates[0].Content.Parts {
        if txt, ok := part.(genai.Text); ok {
            fmt.Printf("%s", string(txt))
        } else if img, ok := part.(genai.ImageData); ok {
            err := os.WriteFile("football-score.jpg", img.Data, 0644)
            if err != nil {
                log.Fatal(err)
            }
        }
    }
}

PUSHTIM

curl -s -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{"parts": [{"text": "Make a simple but stylish graphic of last nights Arsenal game in the Champions League"}]}],
    "tools": [{"google_search": {}}],
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"],
      "imageConfig": {"aspectRatio": "16:9"}
    }
  }" | jq -r '.candidates[0].content.parts[] | select(.inlineData) | .inlineData.data' | head -1 | base64 --decode > football-score.jpg
Grafik i gjeneruar nga inteligjenca artificiale i një rezultati të futbollit të Arsenalit
Grafik i gjeneruar nga inteligjenca artificiale i një rezultati të futbollit të Arsenalit

Udhëzime për redaktimin e imazheve

Këto shembuj tregojnë se si të ofroni imazhe së bashku me kërkesat e tekstit për redaktim, kompozim dhe transferim stili.

1. Shtimi dhe heqja e elementeve

Jepni një imazh dhe përshkruani ndryshimin tuaj. Modeli do të përputhet me stilin, ndriçimin dhe perspektivën e imazhit origjinal.

Shabllon

Using the provided image of [subject], please [add/remove/modify] [element]
to/from the scene. Ensure the change is [description of how the change should
integrate].

Nxitje

"Using the provided image of my cat, please add a small, knitted wizard hat
on its head. Make it look like it's sitting comfortably and matches the soft
lighting of the photo."

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

# Base image prompt: "A photorealistic picture of a fluffy ginger cat sitting on a wooden floor, looking directly at the camera. Soft, natural light from a window."
image_input = Image.open('/path/to/your/cat_photo.png')
text_input = """Using the provided image of my cat, please add a small, knitted wizard hat on its head. Make it look like it's sitting comfortably and not falling off."""

# Generate an image from a text prompt
response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[text_input, image_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("cat_with_hat.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class AddRemoveElements {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          Content.fromParts(
              Part.fromText("""
                  Using the provided image of my cat, please add a small,
                  knitted wizard hat on its head. Make it look like it's
                  sitting comfortably and not falling off.
                  """),
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/cat_photo.png")),
                  "image/png")),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("cat_with_hat.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "/path/to/your/cat_photo.png";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    { text: "Using the provided image of my cat, please add a small, knitted wizard hat on its head. Make it look like it's sitting comfortably and not falling off." },
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image,
      },
    },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("cat_with_hat.png", buffer);
      console.log("Image saved as cat_with_hat.png");
    }
  }
}

main();

Shko

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imagePath := "/path/to/your/cat_photo.png"
  imgData, _ := os.ReadFile(imagePath)

  parts := []*genai.Part{
    genai.NewPartFromText("Using the provided image of my cat, please add a small, knitted wizard hat on its head. Make it look like it's sitting comfortably and not falling off."),
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData,
      },
    },
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash-image",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "cat_with_hat.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

PUSHTIM

IMG_PATH=/path/to/your/cat_photo.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {\"text\": \"Using the provided image of my cat, please add a small, knitted wizard hat on its head. Make it look like it's sitting comfortably and not falling off.\"},
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG_BASE64\"
              }
            }
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > cat_with_hat.png

Hyrje

Prodhimi

Një fotografi fotorealiste e një maceje xhenxhefili me qime..
Një fotografi fotorealiste e një maceje xhenxhefili me qime të buta...
Duke përdorur imazhin e dhënë të maces sime, ju lutem shtoni një kapelë magjistari të vogël të thurur...
Duke përdorur imazhin e dhënë të maces sime, ju lutem shtoni një kapelë magjistari të vogël të thurur...

2. Inpainting (Maskimi semantik)

Përcaktoni në mënyrë bisedore një "maskë" për të modifikuar një pjesë specifike të një imazhi duke e lënë pjesën tjetër të paprekur.

Shabllon

Using the provided image, change only the [specific element] to [new
element/description]. Keep everything else in the image exactly the same,
preserving the original style, lighting, and composition.

Nxitje

"Using the provided image of a living room, change only the blue sofa to be
a vintage, brown leather chesterfield sofa. Keep the rest of the room,
including the pillows on the sofa and the lighting, unchanged."

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

# Base image prompt: "A wide shot of a modern, well-lit living room with a prominent blue sofa in the center. A coffee table is in front of it and a large window is in the background."
living_room_image = Image.open('/path/to/your/living_room.png')
text_input = """Using the provided image of a living room, change only the blue sofa to be a vintage, brown leather chesterfield sofa. Keep the rest of the room, including the pillows on the sofa and the lighting, unchanged."""

# Generate an image from a text prompt
response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[living_room_image, text_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("living_room_edited.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class Inpainting {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          Content.fromParts(
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/living_room.png")),
                  "image/png"),
              Part.fromText("""
                  Using the provided image of a living room, change
                  only the blue sofa to be a vintage, brown leather
                  chesterfield sofa. Keep the rest of the room,
                  including the pillows on the sofa and the lighting,
                  unchanged.
                  """)),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("living_room_edited.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "/path/to/your/living_room.png";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image,
      },
    },
    { text: "Using the provided image of a living room, change only the blue sofa to be a vintage, brown leather chesterfield sofa. Keep the rest of the room, including the pillows on the sofa and the lighting, unchanged." },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("living_room_edited.png", buffer);
      console.log("Image saved as living_room_edited.png");
    }
  }
}

main();

Shko

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imagePath := "/path/to/your/living_room.png"
  imgData, _ := os.ReadFile(imagePath)

  parts := []*genai.Part{
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData,
      },
    },
    genai.NewPartFromText("Using the provided image of a living room, change only the blue sofa to be a vintage, brown leather chesterfield sofa. Keep the rest of the room, including the pillows on the sofa and the lighting, unchanged."),
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash-image",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "living_room_edited.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

PUSHTIM

IMG_PATH=/path/to/your/living_room.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG_BASE64\"
              }
            },
            {\"text\": \"Using the provided image of a living room, change only the blue sofa to be a vintage, brown leather chesterfield sofa. Keep the rest of the room, including the pillows on the sofa and the lighting, unchanged.\"}
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > living_room_edited.png

Hyrje

Prodhimi

Një pamje e gjerë e një dhome ndenjeje moderne dhe të ndriçuar mirë...
Një pamje e gjerë e një dhome ndenjeje moderne dhe të ndriçuar mirë...
Duke përdorur imazhin e dhënë të një dhome ndenjeje, ndryshoni vetëm divanin blu në një divan prej lëkure vintage, ngjyrë kafe, të stilit Chesterfield...
Duke përdorur imazhin e dhënë të një dhome ndenjeje, ndryshoni vetëm divanin blu në një divan prej lëkure vintage, ngjyrë kafe, të stilit Chesterfield...

3. Transferimi i stilit

Jepni një imazh dhe kërkojini modelit të rikrijojë përmbajtjen e tij në një stil artistik të ndryshëm.

Shabllon

Transform the provided photograph of [subject] into the artistic style of [artist/art style]. Preserve the original composition but render it with [description of stylistic elements].

Nxitje

"Transform the provided photograph of a modern city street at night into the artistic style of Vincent van Gogh's 'Starry Night'. Preserve the original composition of buildings and cars, but render all elements with swirling, impasto brushstrokes and a dramatic palette of deep blues and bright yellows."

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

# Base image prompt: "A photorealistic, high-resolution photograph of a busy city street in New York at night, with bright neon signs, yellow taxis, and tall skyscrapers."
city_image = Image.open('/path/to/your/city.png')
text_input = """Transform the provided photograph of a modern city street at night into the artistic style of Vincent van Gogh's 'Starry Night'. Preserve the original composition of buildings and cars, but render all elements with swirling, impasto brushstrokes and a dramatic palette of deep blues and bright yellows."""

# Generate an image from a text prompt
response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[city_image, text_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("city_style_transfer.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class StyleTransfer {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          Content.fromParts(
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/city.png")),
                  "image/png"),
              Part.fromText("""
                  Transform the provided photograph of a modern city
                  street at night into the artistic style of
                  Vincent van Gogh's 'Starry Night'. Preserve the
                  original composition of buildings and cars, but
                  render all elements with swirling, impasto
                  brushstrokes and a dramatic palette of deep blues
                  and bright yellows.
                  """)),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("city_style_transfer.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "/path/to/your/city.png";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image,
      },
    },
    { text: "Transform the provided photograph of a modern city street at night into the artistic style of Vincent van Gogh's 'Starry Night'. Preserve the original composition of buildings and cars, but render all elements with swirling, impasto brushstrokes and a dramatic palette of deep blues and bright yellows." },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("city_style_transfer.png", buffer);
      console.log("Image saved as city_style_transfer.png");
    }
  }
}

main();

Shko

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imagePath := "/path/to/your/city.png"
  imgData, _ := os.ReadFile(imagePath)

  parts := []*genai.Part{
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData,
      },
    },
    genai.NewPartFromText("Transform the provided photograph of a modern city street at night into the artistic style of Vincent van Gogh's 'Starry Night'. Preserve the original composition of buildings and cars, but render all elements with swirling, impasto brushstrokes and a dramatic palette of deep blues and bright yellows."),
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash-image",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "city_style_transfer.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

PUSHTIM

IMG_PATH=/path/to/your/city.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG_BASE64\"
              }
            },
            {\"text\": \"Transform the provided photograph of a modern city street at night into the artistic style of Vincent van Gogh's 'Starry Night'. Preserve the original composition of buildings and cars, but render all elements with swirling, impasto brushstrokes and a dramatic palette of deep blues and bright yellows.\"}
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > city_style_transfer.png

Hyrje

Prodhimi

Një fotografi fotorealiste me rezolucion të lartë e një rruge të qytetit të ngarkuar...
Një fotografi fotorealiste me rezolucion të lartë e një rruge të qytetit të ngarkuar...
Transformoni fotografinë e dhënë të një rruge moderne të qytetit natën...
Transformoni fotografinë e dhënë të një rruge moderne të qytetit natën...

4. Kompozim i avancuar: Kombinimi i imazheve të shumëfishta

Jepni imazhe të shumta si kontekst për të krijuar një skenë të re, të përbërë. Kjo është perfekte për makete produktesh ose kolazhe krijuese.

Shabllon

Create a new image by combining the elements from the provided images. Take
the [element from image 1] and place it with/on the [element from image 2].
The final image should be a [description of the final scene].

Nxitje

"Create a professional e-commerce fashion photo. Take the blue floral dress
from the first image and let the woman from the second image wear it.
Generate a realistic, full-body shot of the woman wearing the dress, with
the lighting and shadows adjusted to match the outdoor environment."

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

# Base image prompts:
# 1. Dress: "A professionally shot photo of a blue floral summer dress on a plain white background, ghost mannequin style."
# 2. Model: "Full-body shot of a woman with her hair in a bun, smiling, standing against a neutral grey studio background."
dress_image = Image.open('/path/to/your/dress.png')
model_image = Image.open('/path/to/your/model.png')

text_input = """Create a professional e-commerce fashion photo. Take the blue floral dress from the first image and let the woman from the second image wear it. Generate a realistic, full-body shot of the woman wearing the dress, with the lighting and shadows adjusted to match the outdoor environment."""

# Generate an image from a text prompt
response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[dress_image, model_image, text_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("fashion_ecommerce_shot.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class AdvancedComposition {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          Content.fromParts(
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/dress.png")),
                  "image/png"),
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/model.png")),
                  "image/png"),
              Part.fromText("""
                  Create a professional e-commerce fashion photo.
                  Take the blue floral dress from the first image and
                  let the woman from the second image wear it. Generate
                  a realistic, full-body shot of the woman wearing the
                  dress, with the lighting and shadows adjusted to
                  match the outdoor environment.
                  """)),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("fashion_ecommerce_shot.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath1 = "/path/to/your/dress.png";
  const imageData1 = fs.readFileSync(imagePath1);
  const base64Image1 = imageData1.toString("base64");
  const imagePath2 = "/path/to/your/model.png";
  const imageData2 = fs.readFileSync(imagePath2);
  const base64Image2 = imageData2.toString("base64");

  const prompt = [
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image1,
      },
    },
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image2,
      },
    },
    { text: "Create a professional e-commerce fashion photo. Take the blue floral dress from the first image and let the woman from the second image wear it. Generate a realistic, full-body shot of the woman wearing the dress, with the lighting and shadows adjusted to match the outdoor environment." },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("fashion_ecommerce_shot.png", buffer);
      console.log("Image saved as fashion_ecommerce_shot.png");
    }
  }
}

main();

Shko

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imgData1, _ := os.ReadFile("/path/to/your/dress.png")
  imgData2, _ := os.ReadFile("/path/to/your/model.png")

  parts := []*genai.Part{
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData1,
      },
    },
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData2,
      },
    },
    genai.NewPartFromText("Create a professional e-commerce fashion photo. Take the blue floral dress from the first image and let the woman from the second image wear it. Generate a realistic, full-body shot of the woman wearing the dress, with the lighting and shadows adjusted to match the outdoor environment."),
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash-image",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "fashion_ecommerce_shot.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

PUSHTIM

IMG_PATH1=/path/to/your/dress.png
IMG_PATH2=/path/to/your/model.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG1_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH1" 2>&1)
IMG2_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH2" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG1_BASE64\"
              }
            },
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG2_BASE64\"
              }
            },
            {\"text\": \"Create a professional e-commerce fashion photo. Take the blue floral dress from the first image and let the woman from the second image wear it. Generate a realistic, full-body shot of the woman wearing the dress, with the lighting and shadows adjusted to match the outdoor environment.\"}
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > fashion_ecommerce_shot.png

Hyrja 1

Hyrja 2

Prodhimi

Një foto e shkrepur profesionalisht e një fustani veror me lule blu...
Një foto e shkrepur profesionalisht e një fustani veror me lule blu...
Foto e plotë e një gruaje me flokët e mbledhura topuz...
Foto e plotë e një gruaje me flokët e mbledhura topuz...
Krijo një foto profesionale mode për tregtinë elektronike...
Krijo një foto profesionale mode për tregtinë elektronike...

5. Ruajtja e detajeve me besnikëri të lartë

Për t'u siguruar që detajet kritike (si një fytyrë ose logo) ruhen gjatë një redaktimi, përshkruajini ato me shumë detaje së bashku me kërkesën tuaj për redaktim.

Shabllon

Using the provided images, place [element from image 2] onto [element from
image 1]. Ensure that the features of [element from image 1] remain
completely unchanged. The added element should [description of how the
element should integrate].

Nxitje

"Take the first image of the woman with brown hair, blue eyes, and a neutral
expression. Add the logo from the second image onto her black t-shirt.
Ensure the woman's face and features remain completely unchanged. The logo
should look like it's naturally printed on the fabric, following the folds
of the shirt."

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

# Base image prompts:
# 1. Woman: "A professional headshot of a woman with brown hair and blue eyes, wearing a plain black t-shirt, against a neutral studio background."
# 2. Logo: "A simple, modern logo with the letters 'G' and 'A' in a white circle."
woman_image = Image.open('/path/to/your/woman.png')
logo_image = Image.open('/path/to/your/logo.png')
text_input = """Take the first image of the woman with brown hair, blue eyes, and a neutral expression. Add the logo from the second image onto her black t-shirt. Ensure the woman's face and features remain completely unchanged. The logo should look like it's naturally printed on the fabric, following the folds of the shirt."""

# Generate an image from a text prompt
response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[woman_image, logo_image, text_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("woman_with_logo.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class HighFidelity {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          Content.fromParts(
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/woman.png")),
                  "image/png"),
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/logo.png")),
                  "image/png"),
              Part.fromText("""
                  Take the first image of the woman with brown hair,
                  blue eyes, and a neutral expression. Add the logo
                  from the second image onto her black t-shirt.
                  Ensure the woman's face and features remain
                  completely unchanged. The logo should look like
                  it's naturally printed on the fabric, following
                  the folds of the shirt.
                  """)),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("woman_with_logo.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath1 = "/path/to/your/woman.png";
  const imageData1 = fs.readFileSync(imagePath1);
  const base64Image1 = imageData1.toString("base64");
  const imagePath2 = "/path/to/your/logo.png";
  const imageData2 = fs.readFileSync(imagePath2);
  const base64Image2 = imageData2.toString("base64");

  const prompt = [
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image1,
      },
    },
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image2,
      },
    },
    { text: "Take the first image of the woman with brown hair, blue eyes, and a neutral expression. Add the logo from the second image onto her black t-shirt. Ensure the woman's face and features remain completely unchanged. The logo should look like it's naturally printed on the fabric, following the folds of the shirt." },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("woman_with_logo.png", buffer);
      console.log("Image saved as woman_with_logo.png");
    }
  }
}

main();

Shko

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imgData1, _ := os.ReadFile("/path/to/your/woman.png")
  imgData2, _ := os.ReadFile("/path/to/your/logo.png")

  parts := []*genai.Part{
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData1,
      },
    },
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData2,
      },
    },
    genai.NewPartFromText("Take the first image of the woman with brown hair, blue eyes, and a neutral expression. Add the logo from the second image onto her black t-shirt. Ensure the woman's face and features remain completely unchanged. The logo should look like it's naturally printed on the fabric, following the folds of the shirt."),
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash-image",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "woman_with_logo.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

PUSHTIM

IMG_PATH1=/path/to/your/woman.png
IMG_PATH2=/path/to/your/logo.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG1_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH1" 2>&1)
IMG2_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH2" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG1_BASE64\"
              }
            },
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG2_BASE64\"
              }
            },
            {\"text\": \"Take the first image of the woman with brown hair, blue eyes, and a neutral expression. Add the logo from the second image onto her black t-shirt. Ensure the woman's face and features remain completely unchanged. The logo should look like it's naturally printed on the fabric, following the folds of the shirt.\"}
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > woman_with_logo.png

Hyrja 1

Hyrja 2

Prodhimi

Një foto profesionale e një gruaje me flokë kafe dhe sy blu...
Një foto profesionale e një gruaje me flokë kafe dhe sy blu...
Një logo e thjeshtë dhe moderne me shkronjat 'G' dhe 'A'...
Një logo e thjeshtë dhe moderne me shkronjat 'G' dhe 'A'...
Merrni imazhin e parë të gruas me flokë kafe, sy blu dhe një shprehje neutrale...
Merrni imazhin e parë të gruas me flokë kafe, sy blu dhe një shprehje neutrale...

6. Jepini jetë diçkaje

Ngarko një skicë ose vizatim të përafërt dhe kërkoji modelit ta rafinojë atë në një imazh të përfunduar.

Shabllon

Turn this rough [medium] sketch of a [subject] into a [style description]
photo. Keep the [specific features] from the sketch but add [new details/materials].

Nxitje

"Turn this rough pencil sketch of a futuristic car into a polished photo of the finished concept car in a showroom. Keep the sleek lines and low profile from the sketch but add metallic blue paint and neon rim lighting."

Python

from google import genai
from PIL import Image

client = genai.Client()

# Base image prompt: "A rough pencil sketch of a flat sports car on white paper."
sketch_image = Image.open('/path/to/your/car_sketch.png')
text_input = """Turn this rough pencil sketch of a futuristic car into a polished photo of the finished concept car in a showroom. Keep the sleek lines and low profile from the sketch but add metallic blue paint and neon rim lighting."""

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[sketch_image, text_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("car_photo.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class BringToLife {
  public static void main(String[] args) throws IOException {
    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview",
          Content.fromParts(
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/car_sketch.png")),
                  "image/png"),
              Part.fromText("""
                  Turn this rough pencil sketch of a futuristic car into a polished photo of the finished concept car in a showroom. Keep the sleek lines and low profile from the sketch but add metallic blue paint and neon rim lighting.
                  """)),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("car_photo.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "/path/to/your/car_sketch.png";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image,
      },
    },
    { text: "Turn this rough pencil sketch of a futuristic car into a polished photo of the finished concept car in a showroom. Keep the sleek lines and low profile from the sketch but add metallic blue paint and neon rim lighting." },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-3-pro-image-preview",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("car_photo.png", buffer);
      console.log("Image saved as car_photo.png");
    }
  }
}

main();

Shko

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imgData, _ := os.ReadFile("/path/to/your/car_sketch.png")

  parts := []*genai.Part{
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData,
      },
    },
    genai.NewPartFromText("Turn this rough pencil sketch of a futuristic car into a polished photo of the finished concept car in a showroom. Keep the sleek lines and low profile from the sketch but add metallic blue paint and neon rim lighting."),
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-3-pro-image-preview",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "car_photo.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

PUSHTIM

IMG_PATH=/path/to/your/car_sketch.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG_BASE64\"
              }
            },
            {\"text\": \"Turn this rough pencil sketch of a futuristic car into a polished photo of the finished concept car in a showroom. Keep the sleek lines and low profile from the sketch but add metallic blue paint and neon rim lighting.\"}
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > car_photo.png

Hyrje

Prodhimi

Skicë e një makine
Skicë e përafërt e një makine
Rezultati që tregon konceptin përfundimtar të makinës
Foto e lëmuar e një makine

7. Konsistenca e personazheve: Pamje 360 ​​gradë

Mund të gjeneroni pamje 360 ​​gradë të një personazhi duke kërkuar në mënyrë iterative kënde të ndryshme. Për rezultate më të mira, përfshini imazhe të gjeneruara më parë në kërkesat pasuese për të ruajtur qëndrueshmërinë. Për poza komplekse, përfshini një imazh reference të pozës së dëshiruar.

Shabllon

A studio portrait of [person] against [background], [looking forward/in profile looking right/etc.]

Nxitje

A studio portrait of this man against white, in profile looking right

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

image_input = Image.open('/path/to/your/man_in_white_glasses.jpg')
text_input = """A studio portrait of this man against white, in profile looking right"""

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[text_input, image_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("man_right_profile.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class CharacterConsistency {
  public static void main(String[] args) throws IOException {
    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview",
          Content.fromParts(
              Part.fromText("""
                  A studio portrait of this man against white, in profile looking right
                  """),
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/man_in_white_glasses.jpg")),
                  "image/jpeg")),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("man_right_profile.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "/path/to/your/man_in_white_glasses.jpg";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    { text: "A studio portrait of this man against white, in profile looking right" },
    {
      inlineData: {
        mimeType: "image/jpeg",
        data: base64Image,
      },
    },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-3-pro-image-preview",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("man_right_profile.png", buffer);
      console.log("Image saved as man_right_profile.png");
    }
  }
}

main();

Shko

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imagePath := "/path/to/your/man_in_white_glasses.jpg"
  imgData, _ := os.ReadFile(imagePath)

  parts := []*genai.Part{
    genai.NewPartFromText("A studio portrait of this man against white, in profile looking right"),
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/jpeg",
        Data:     imgData,
      },
    },
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-3-pro-image-preview",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "man_right_profile.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

PUSHTIM

IMG_PATH=/path/to/your/man_in_white_glasses.jpg

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {\"text\": \"A studio portrait of this man against white, in profile looking right\"},
            {
              \"inline_data\": {
                \"mime_type\":\"image/jpeg\",
                \"data\": \"$IMG_BASE64\"
              }
            }
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > man_right_profile.png

Hyrje

Dalja 1

Dalja 2

Informacion origjinal i një burri me syze të bardha
Imazh origjinal
Prodhimi i një burri me syze të bardha që duket mirë
Burrë me syze të bardha që shikon drejt
Prodhimi i një burri me syze të bardha që shikon përpara
Burrë me syze të bardha duke parë përpara

Praktikat më të Mira

Për t'i përmirësuar rezultatet tuaja nga të mira në të shkëlqyera, përfshini këto strategji profesionale në rrjedhën tuaj të punës.

  • Ji hiper-specifik: Sa më shumë detaje të japësh, aq më shumë kontroll ke. Në vend të "armaturës fantazi", përshkruaje atë: "armaturë e zbukuruar me pllaka elfësh, e gdhendur me modele gjethesh argjendi, me një jakë të lartë dhe pauldronë në formën e krahëve të skifterit".
  • Jepni kontekstin dhe qëllimin: Shpjegoni qëllimin e imazhit. Kuptimi i kontekstit nga modeli do të ndikojë në rezultatin përfundimtar. Për shembull, "Krijo një logo për një markë të nivelit të lartë dhe minimaliste të kujdesit për lëkurën" do të japë rezultate më të mira sesa thjesht "Krijo një logo".
  • Përsëriteni dhe përsosni: Mos prisni një imazh perfekt që në provën e parë. Përdorni natyrën bisedore të modelit për të bërë ndryshime të vogla. Ndiqni me pyetje të tilla si: "Kjo është shumë mirë, por a mund ta bëni ndriçimin pak më të ngrohtë?" ose "Mbajeni gjithçka të njëjtë, por ndryshoni shprehjen e personazhit që të jetë më serioz".
  • Përdorni udhëzime hap pas hapi: Për skena komplekse me shumë elementë, ndajeni kërkesën tuaj në hapa. "Së pari, krijoni një sfond të një pylli të qetë dhe me mjegull në agim. Pastaj, në plan të parë, shtoni një altar të lashtë prej guri të mbuluar me myshk. Së fundmi, vendosni një shpatë të vetme që ndriçon sipër altarit."
  • Përdorni "Shtylla Semantike Negative": Në vend që të thoni "nuk ka makina", përshkruani skenën e dëshiruar pozitivisht: "një rrugë e zbrazët, e shkretë pa shenja trafiku".
  • Kontrolloni Kamerën: Përdorni gjuhë fotografike dhe kinematografike për të kontrolluar kompozimin. Terma si wide-angle shot , macro shot , low-angle perspective .

Kufizime

  • Për performancën më të mirë, përdorni gjuhët e mëposhtme: EN, ar-EG, de-DE, es-MX, fr-FR, hi-IN, id-ID, it-IT, ja-JP, ko-KR, pt-BR, ru-RU, ua-UA, vi-VN, zh-CN.
  • Gjenerimi i imazheve nuk mbështet hyrjet audio ose video.
  • Modeli nuk do të ndjekë gjithmonë numrin e saktë të rezultateve të imazheve që përdoruesi kërkon në mënyrë të qartë.
  • gemini-2.5-flash-image funksionon më mirë me deri në 3 imazhe si të dhëna hyrëse, ndërsa gemini-3-pro-image-preview mbështet 5 imazhe me besueshmëri të lartë dhe deri në 14 imazhe në total.
  • Kur gjeneroni tekst për një imazh, Gemini funksionon më mirë nëse së pari gjeneroni tekstin dhe më pas kërkoni një imazh me tekstin.
  • Të gjitha imazhet e gjeneruara përfshijnë një filigran SynthID .

Konfigurime opsionale

Mund të konfiguroni opsionalisht modalitetet e përgjigjes dhe raportin e aspektit të daljes së modelit në fushën e config të thirrjeve generate_content .

Llojet e daljeve

Modeli, si parazgjedhje, kthen përgjigje me tekst dhe imazh (p.sh., response_modalities=['Text', 'Image'] ). Mund ta konfiguroni përgjigjen për të kthyer vetëm imazhe pa tekst duke përdorur response_modalities=['Image'] .

Python

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[prompt],
    config=types.GenerateContentConfig(
        response_modalities=['Image']
    )
)

JavaScript

const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
    config: {
        responseModalities: ['Image']
    }
  });

Shko

result, _ := client.Models.GenerateContent(
    ctx,
    "gemini-2.5-flash-image",
    genai.Text("Create a picture of a nano banana dish in a " +
                " fancy restaurant with a Gemini theme"),
    &genai.GenerateContentConfig{
        ResponseModalities: "Image",
    },
  )

Java

response = client.models.generateContent(
    "gemini-2.5-flash-image",
    prompt,
    GenerateContentConfig.builder()
        .responseModalities("IMAGE")
        .build());

PUSHTIM

-d '{
  "contents": [{
    "parts": [
      {"text": "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme"}
    ]
  }],
  "generationConfig": {
    "responseModalities": ["Image"]
  }
}' \

Raportet e aspektit dhe madhësia e imazhit

Modeli vendoset si parazgjedhje për të përputhur madhësinë e imazhit të daljes me atë të imazhit tuaj hyrës, ose përndryshe gjeneron katrorë 1:1. Ju mund të kontrolloni raportin e aspektit të imazhit të daljes duke përdorur fushën aspect_ratio nën image_config në kërkesën e përgjigjes, të treguar këtu:

Python

# For gemini-2.5-flash-image
response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[prompt],
    config=types.GenerateContentConfig(
        image_config=types.ImageConfig(
            aspect_ratio="16:9",
        )
    )
)

# For gemini-3-pro-image-preview
response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[prompt],
    config=types.GenerateContentConfig(
        image_config=types.ImageConfig(
            aspect_ratio="16:9",
            image_size="2K",
        )
    )
)

JavaScript

// For gemini-2.5-flash-image
const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
    config: {
      imageConfig: {
        aspectRatio: "16:9",
      },
    }
  });

// For gemini-3-pro-image-preview
const response_gemini3 = await ai.models.generateContent({
    model: "gemini-3-pro-image-preview",
    contents: prompt,
    config: {
      imageConfig: {
        aspectRatio: "16:9",
        imageSize: "2K",
      },
    }
  });

Shko

// For gemini-2.5-flash-image
result, _ := client.Models.GenerateContent(
    ctx,
    "gemini-2.5-flash-image",
    genai.Text("Create a picture of a nano banana dish in a " +
                " fancy restaurant with a Gemini theme"),
    &genai.GenerateContentConfig{
        ImageConfig: &genai.ImageConfig{
          AspectRatio: "16:9",
        },
    }
  )

// For gemini-3-pro-image-preview
result_gemini3, _ := client.Models.GenerateContent(
    ctx,
    "gemini-3-pro-image-preview",
    genai.Text("Create a picture of a nano banana dish in a " +
                " fancy restaurant with a Gemini theme"),
    &genai.GenerateContentConfig{
        ImageConfig: &genai.ImageConfig{
          AspectRatio: "16:9",
          ImageSize: "2K",
        },
    }
  )

Java

// For gemini-2.5-flash-image
response = client.models.generateContent(
    "gemini-2.5-flash-image",
    prompt,
    GenerateContentConfig.builder()
        .imageConfig(ImageConfig.builder()
            .aspectRatio("16:9")
            .build())
        .build());

// For gemini-3-pro-image-preview
response_gemini3 = client.models.generateContent(
    "gemini-3-pro-image-preview",
    prompt,
    GenerateContentConfig.builder()
        .imageConfig(ImageConfig.builder()
            .aspectRatio("16:9")
            .imageSize("2K")
            .build())
        .build());

PUSHTIM

# For gemini-2.5-flash-image
-d '{
  "contents": [{
    "parts": [
      {"text": "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme"}
    ]
  }],
  "generationConfig": {
    "imageConfig": {
      "aspectRatio": "16:9"
    }
  }
}' \

# For gemini-3-pro-image-preview
-d '{
  "contents": [{
    "parts": [
      {"text": "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme"}
    ]
  }],
  "generationConfig": {
    "imageConfig": {
      "aspectRatio": "16:9",
      "imageSize": "2K"
    }
  }
}' \

Raportet e ndryshme të disponueshme dhe madhësia e imazhit të gjeneruar janë renditur në tabelat e mëposhtme:

Imazh Flash i Gemini 2.5

Raporti i aspektit Rezolucioni Tokenat
1:1 1024x1024 1290
2:3 832x1248 1290
3:2 1248x832 1290
3:4 864x1184 1290
4:3 1184x864 1290
4:5 896x1152 1290
5:4 1152x896 1290
9:16 768x1344 1290
16:9 1344x768 1290
21:9 1536x672 1290

Pamje paraprake e imazhit të Gemini 3 Pro

Raporti i aspektit Rezolucion 1K 1 mijë tokena Rezolucion 2K 2 mijë tokena Rezolucion 4K 4K tokena
1:1 1024x1024 1120 2048x2048 1120 4096x4096 2000
2:3 848x1264 1120 1696x2528 1120 3392x5056 2000
3:2 1264x848 1120 2528x1696 1120 5056x3392 2000
3:4 896x1200 1120 1792x2400 1120 3584x4800 2000
4:3 1200x896 1120 2400x1792 1120 4800x3584 2000
4:5 928x1152 1120 1856x2304 1120 3712x4608 2000
5:4 1152x928 1120 2304x1856 1120 4608x3712 2000
9:16 768x1376 1120 1536x2752 1120 3072x5504 2000
16:9 1376x768 1120 2752x1536 1120 5504x3072 2000
21:9 1584x672 1120 3168x1344 1120 6336x2688 2000

Përzgjedhja e modelit

Zgjidhni modelin që i përshtatet më së miri rastit tuaj specifik të përdorimit.

  • Pamja paraprake e imazhit Gemini 3 Pro (Nano Banana Pro Preview) është projektuar për prodhimin profesional të aseteve dhe udhëzimeve komplekse. Ky model ofron mbështetje në botën reale duke përdorur Kërkimin në Google, një proces të paracaktuar "Thinking" që përsos kompozimin para gjenerimit dhe mund të gjenerojë imazhe me rezolucion deri në 4K.

  • Gemini 2.5 Flash Image (Nano Banana) është projektuar për shpejtësi dhe efikasitet. Ky model është i optimizuar për detyra me volum të lartë dhe me vonesë të ulët dhe gjeneron imazhe me rezolucion 1024px.

Kur të përdoret Imagen

Përveç përdorimit të aftësive të integruara të gjenerimit të imazheve të Gemini, ju gjithashtu mund të hyni në Imagen , modelin tonë të specializuar të gjenerimit të imazheve, përmes API-t Gemini.

Atribut Imazhe Imazhi i Binjakëve - Vendas i Binjakëve
Pikat e forta Modeli specializohet në gjenerimin e imazheve. Rekomandim i parazgjedhur.
Fleksibilitet i pakrahasueshëm, kuptim kontekstual dhe redaktim i thjeshtë, pa maskë. I aftë në mënyrë unike për redaktim bisedor me shumë kthesa.
Disponueshmëria Në përgjithësi i disponueshëm Pamje paraprake (Përdorimi i prodhimit lejohet)
Latencia I ulët . I optimizuar për performancë pothuajse në kohë reale. Më i lartë. Kërkohen më shumë llogaritje për aftësitë e tij të përparuara.
Kosto Kosto-efektive për detyra të specializuara. 0.02 dollarë/imazh deri në 0.12 dollarë/imazh Çmimet e bazuara në token. 30 dollarë për 1 milion token për prodhimin e imazhit (prodhimi i imazhit i tokenizuar në 1290 token për imazh të sheshtë, deri në 1024x1024px)
Detyrat e rekomanduara
  • Cilësia e imazhit, fotorealizmi, detajet artistike ose stile specifike (p.sh., impresionizmi, anime) janë përparësi kryesore.
  • Futja e markës, stilit ose gjenerimi i logove dhe dizenjove të produkteve.
  • Gjenerimi i drejtshkrimit ose tipografisë së avancuar.
  • Gjenerim i ndërthurur i tekstit dhe imazhit për të kombinuar pa probleme tekstin dhe imazhet.
  • Kombinoni elementë krijues nga imazhe të shumta me një nxitje të vetme.
  • Bëni ndryshime shumë specifike në imazhe, modifikoni elementët individualë me komanda të thjeshta gjuhësore dhe punoni në një imazh në mënyrë iterative.
  • Aplikoni një dizajn ose teksturë specifike nga një imazh në tjetrin, duke ruajtur formën dhe detajet e subjektit origjinal.

Imagen 4 duhet të jetë modeli juaj i preferuar kur filloni të gjeneroni imazhe me Imagen. Zgjidhni Imagen 4 Ultra për raste përdorimi të avancuara ose kur keni nevojë për cilësinë më të mirë të imazhit (vini re se mund të gjeneroni vetëm një imazh në të njëjtën kohë).

Çfarë vjen më pas