Live API capabilities guide

This is a comprehensive guide that covers capabilities and configurations available with the Live API. See Get started with Live API page for a overview and sample code for common use cases.

Before you begin

  • Familiarize yourself with core concepts: If you haven't already done so, read the Get started with Live API page first. This will introduce you to the fundamental principles of the Live API, how it works, and the different implementation approaches.
  • Try the Live API in AI Studio: You may find it useful to try the Live API in Google AI Studio before you start building. To use the Live API in Google AI Studio, select Stream.

Establishing a connection

The following example shows how to create a connection with an API key:

Python

import asyncio
from google import genai

client = genai.Client()

model = "gemini-2.5-flash-native-audio-preview-09-2025"
config = {"response_modalities": ["AUDIO"]}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        print("Session started")
        # Send content...

if __name__ == "__main__":
    asyncio.run(main())

JavaScript

import { GoogleGenAI, Modality } from '@google/genai';

const ai = new GoogleGenAI({});
const model = 'gemini-2.5-flash-native-audio-preview-09-2025';
const config = { responseModalities: [Modality.AUDIO] };

async function main() {

  const session = await ai.live.connect({
    model: model,
    callbacks: {
      onopen: function () {
        console.debug('Opened');
      },
      onmessage: function (message) {
        console.debug(message);
      },
      onerror: function (e) {
        console.debug('Error:', e.message);
      },
      onclose: function (e) {
        console.debug('Close:', e.reason);
      },
    },
    config: config,
  });

  console.debug("Session started");
  // Send content...

  session.close();
}

main();

Interaction modalities

The following sections provide examples and supporting context for the different input and output modalities available in Live API.

Sending and receiving audio

The most common audio example, audio-to-audio, is covered in the Getting started guide.

Audio formats

Audio data in the Live API is always raw, little-endian, 16-bit PCM. Audio output always uses a sample rate of 24kHz. Input audio is natively 16kHz, but the Live API will resample if needed so any sample rate can be sent. To convey the sample rate of input audio, set the MIME type of each audio-containing Blob to a value like audio/pcm;rate=16000.

Sending text

Here's how you can send text:

Python

message = "Hello, how are you?"
await session.send_client_content(turns=message, turn_complete=True)

JavaScript

const message = 'Hello, how are you?';
session.sendClientContent({ turns: message, turnComplete: true });

Incremental content updates

Use incremental updates to send text input, establish session context, or restore session context. For short contexts you can send turn-by-turn interactions to represent the exact sequence of events:

Python

turns = [
    {"role": "user", "parts": [{"text": "What is the capital of France?"}]},
    {"role": "model", "parts": [{"text": "Paris"}]},
]

await session.send_client_content(turns=turns, turn_complete=False)

turns = [{"role": "user", "parts": [{"text": "What is the capital of Germany?"}]}]

await session.send_client_content(turns=turns, turn_complete=True)

JavaScript

let inputTurns = [
  { "role": "user", "parts": [{ "text": "What is the capital of France?" }] },
  { "role": "model", "parts": [{ "text": "Paris" }] },
]

session.sendClientContent({ turns: inputTurns, turnComplete: false })

inputTurns = [{ "role": "user", "parts": [{ "text": "What is the capital of Germany?" }] }]

session.sendClientContent({ turns: inputTurns, turnComplete: true })

For longer contexts it's recommended to provide a single message summary to free up the context window for subsequent interactions. See Session Resumption for another method for loading session context.

Audio transcriptions

In addition to the model response, you can also receive transcriptions of both the audio output and the audio input.

To enable transcription of the model's audio output, send output_audio_transcription in the setup config. The transcription language is inferred from the model's response.

Python

import asyncio
from google import genai
from google.genai import types

client = genai.Client()
model = "gemini-2.5-flash-native-audio-preview-09-2025"

config = {
    "response_modalities": ["AUDIO"],
    "output_audio_transcription": {}
}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        message = "Hello? Gemini are you there?"

        await session.send_client_content(
            turns={"role": "user", "parts": [{"text": message}]}, turn_complete=True
        )

        async for response in session.receive():
            if response.server_content.model_turn:
                print("Model turn:", response.server_content.model_turn)
            if response.server_content.output_transcription:
                print("Transcript:", response.server_content.output_transcription.text)

if __name__ == "__main__":
    asyncio.run(main())

JavaScript

import { GoogleGenAI, Modality } from '@google/genai';

const ai = new GoogleGenAI({});
const model = 'gemini-2.5-flash-native-audio-preview-09-2025';

const config = {
  responseModalities: [Modality.AUDIO],
  outputAudioTranscription: {}
};

async function live() {
  const responseQueue = [];

  async function waitMessage() {
    let done = false;
    let message = undefined;
    while (!done) {
      message = responseQueue.shift();
      if (message) {
        done = true;
      } else {
        await new Promise((resolve) => setTimeout(resolve, 100));
      }
    }
    return message;
  }

  async function handleTurn() {
    const turns = [];
    let done = false;
    while (!done) {
      const message = await waitMessage();
      turns.push(message);
      if (message.serverContent && message.serverContent.turnComplete) {
        done = true;
      }
    }
    return turns;
  }

  const session = await ai.live.connect({
    model: model,
    callbacks: {
      onopen: function () {
        console.debug('Opened');
      },
      onmessage: function (message) {
        responseQueue.push(message);
      },
      onerror: function (e) {
        console.debug('Error:', e.message);
      },
      onclose: function (e) {
        console.debug('Close:', e.reason);
      },
    },
    config: config,
  });

  const inputTurns = 'Hello how are you?';
  session.sendClientContent({ turns: inputTurns });

  const turns = await handleTurn();

  for (const turn of turns) {
    if (turn.serverContent && turn.serverContent.outputTranscription) {
      console.debug('Received output transcription: %s\n', turn.serverContent.outputTranscription.text);
    }
  }

  session.close();
}

async function main() {
  await live().catch((e) => console.error('got error', e));
}

main();

To enable transcription of the model's audio input, send input_audio_transcription in setup config.

Python

import asyncio
from pathlib import Path
from google import genai
from google.genai import types

client = genai.Client()
model = "gemini-2.5-flash-native-audio-preview-09-2025"

config = {
    "response_modalities": ["AUDIO"],
    "input_audio_transcription": {},
}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        audio_data = Path("16000.pcm").read_bytes()

        await session.send_realtime_input(
            audio=types.Blob(data=audio_data, mime_type='audio/pcm;rate=16000')
        )

        async for msg in session.receive():
            if msg.server_content.input_transcription:
                print('Transcript:', msg.server_content.input_transcription.text)

if __name__ == "__main__":
    asyncio.run(main())

JavaScript

import { GoogleGenAI, Modality } from '@google/genai';
import * as fs from "node:fs";
import pkg from 'wavefile';
const { WaveFile } = pkg;

const ai = new GoogleGenAI({});
const model = 'gemini-2.5-flash-native-audio-preview-09-2025';

const config = {
  responseModalities: [Modality.AUDIO],
  inputAudioTranscription: {}
};

async function live() {
  const responseQueue = [];

  async function waitMessage() {
    let done = false;
    let message = undefined;
    while (!done) {
      message = responseQueue.shift();
      if (message) {
        done = true;
      } else {
        await new Promise((resolve) => setTimeout(resolve, 100));
      }
    }
    return message;
  }

  async function handleTurn() {
    const turns = [];
    let done = false;
    while (!done) {
      const message = await waitMessage();
      turns.push(message);
      if (message.serverContent && message.serverContent.turnComplete) {
        done = true;
      }
    }
    return turns;
  }

  const session = await ai.live.connect({
    model: model,
    callbacks: {
      onopen: function () {
        console.debug('Opened');
      },
      onmessage: function (message) {
        responseQueue.push(message);
      },
      onerror: function (e) {
        console.debug('Error:', e.message);
      },
      onclose: function (e) {
        console.debug('Close:', e.reason);
      },
    },
    config: config,
  });

  // Send Audio Chunk
  const fileBuffer = fs.readFileSync("16000.wav");

  // Ensure audio conforms to API requirements (16-bit PCM, 16kHz, mono)
  const wav = new WaveFile();
  wav.fromBuffer(fileBuffer);
  wav.toSampleRate(16000);
  wav.toBitDepth("16");
  const base64Audio = wav.toBase64();

  // If already in correct format, you can use this:
  // const fileBuffer = fs.readFileSync("sample.pcm");
  // const base64Audio = Buffer.from(fileBuffer).toString('base64');

  session.sendRealtimeInput(
    {
      audio: {
        data: base64Audio,
        mimeType: "audio/pcm;rate=16000"
      }
    }
  );

  const turns = await handleTurn();
  for (const turn of turns) {
    if (turn.text) {
      console.debug('Received text: %s\n', turn.text);
    }
    else if (turn.data) {
      console.debug('Received inline data: %s\n', turn.data);
    }
    else if (turn.serverContent && turn.serverContent.inputTranscription) {
      console.debug('Received input transcription: %s\n', turn.serverContent.inputTranscription.text);
    }
  }

  session.close();
}

async function main() {
  await live().catch((e) => console.error('got error', e));
}

main();

Stream audio and video

Change voice and language

Native audio output models support any of the voices available for our Text-to-Speech (TTS) models. You can listen to all the voices in AI Studio.

To specify a voice, set the voice name within the speechConfig object as part of the session configuration:

Python

config = {
    "response_modalities": ["AUDIO"],
    "speech_config": {
        "voice_config": {"prebuilt_voice_config": {"voice_name": "Kore"}}
    },
}

JavaScript

const config = {
  responseModalities: [Modality.AUDIO],
  speechConfig: { voiceConfig: { prebuiltVoiceConfig: { voiceName: "Kore" } } }
};

The Live API supports multiple languages. Native audio output models automatically choose the appropriate language and don't support explicitly setting the language code.

Native audio capabilities

Our latest models feature native audio output, which provides natural, realistic-sounding speech and improved multilingual performance. Native audio also enables advanced features like affective (emotion-aware) dialogue, proactive audio (where the model intelligently decides when to respond to input), and "thinking".

Affective dialog

This feature lets Gemini adapt its response style to the input expression and tone.

To use affective dialog, set the api version to v1alpha and set enable_affective_dialog to truein the setup message:

Python

client = genai.Client(http_options={"api_version": "v1alpha"})

config = types.LiveConnectConfig(
    response_modalities=["AUDIO"],
    enable_affective_dialog=True
)

JavaScript

const ai = new GoogleGenAI({ httpOptions: {"apiVersion": "v1alpha"} });

const config = {
  responseModalities: [Modality.AUDIO],
  enableAffectiveDialog: true
};

Proactive audio

When this feature is enabled, Gemini can proactively decide not to respond if the content is not relevant.

To use it, set the api version to v1alpha and configure the proactivity field in the setup message and set proactive_audio to true:

Python

client = genai.Client(http_options={"api_version": "v1alpha"})

config = types.LiveConnectConfig(
    response_modalities=["AUDIO"],
    proactivity={'proactive_audio': True}
)

JavaScript

const ai = new GoogleGenAI({ httpOptions: {"apiVersion": "v1alpha"} });

const config = {
  responseModalities: [Modality.AUDIO],
  proactivity: { proactiveAudio: true }
}

Thinking

The latest native audio output model gemini-2.5-flash-native-audio-preview-09-2025 supports thinking capabilities, with dynamic thinking enabled by default.

The thinkingBudget parameter guides the model on the number of thinking tokens to use when generating a response. You can disable thinking by setting thinkingBudget to 0. For more info on the thinkingBudget configuration details of the model, see the thinking budgets documentation.

Python

model = "gemini-2.5-flash-native-audio-preview-09-2025"

config = types.LiveConnectConfig(
    response_modalities=["AUDIO"]
    thinking_config=types.ThinkingConfig(
        thinking_budget=1024,
    )
)

async with client.aio.live.connect(model=model, config=config) as session:
    # Send audio input and receive audio

JavaScript

const model = 'gemini-2.5-flash-native-audio-preview-09-2025';
const config = {
  responseModalities: [Modality.AUDIO],
  thinkingConfig: {
    thinkingBudget: 1024,
  },
};

async function main() {

  const session = await ai.live.connect({
    model: model,
    config: config,
    callbacks: ...,
  });

  // Send audio input and receive audio

  session.close();
}

main();

Additionally, you can enable thought summaries by setting includeThoughts to true in your configuration. See thought summaries for more info:

Python

model = "gemini-2.5-flash-native-audio-preview-09-2025"

config = types.LiveConnectConfig(
    response_modalities=["AUDIO"]
    thinking_config=types.ThinkingConfig(
        thinking_budget=1024,
        include_thoughts=True
    )
)

JavaScript

const model = 'gemini-2.5-flash-native-audio-preview-09-2025';
const config = {
  responseModalities: [Modality.AUDIO],
  thinkingConfig: {
    thinkingBudget: 1024,
    includeThoughts: true,
  },
};

Voice Activity Detection (VAD)

Voice Activity Detection (VAD) allows the model to recognize when a person is speaking. This is essential for creating natural conversations, as it allows a user to interrupt the model at any time.

When VAD detects an interruption, the ongoing generation is canceled and discarded. Only the information already sent to the client is retained in the session history. The server then sends a BidiGenerateContentServerContent message to report the interruption.

The Gemini server then discards any pending function calls and sends a BidiGenerateContentServerContent message with the IDs of the canceled calls.

Python

async for response in session.receive():
    if response.server_content.interrupted is True:
        # The generation was interrupted

        # If realtime playback is implemented in your application,
        # you should stop playing audio and clear queued playback here.

JavaScript

const turns = await handleTurn();

for (const turn of turns) {
  if (turn.serverContent && turn.serverContent.interrupted) {
    // The generation was interrupted

    // If realtime playback is implemented in your application,
    // you should stop playing audio and clear queued playback here.
  }
}

Automatic VAD

By default, the model automatically performs VAD on a continuous audio input stream. VAD can be configured with the realtimeInputConfig.automaticActivityDetection field of the setup configuration.

When the audio stream is paused for more than a second (for example, because the user switched off the microphone), an audioStreamEnd event should be sent to flush any cached audio. The client can resume sending audio data at any time.

Python

# example audio file to try:
# URL = "https://storage.googleapis.com/generativeai-downloads/data/hello_are_you_there.pcm"
# !wget -q $URL -O sample.pcm
import asyncio
from pathlib import Path
from google import genai
from google.genai import types

client = genai.Client()
model = "gemini-live-2.5-flash-preview"

config = {"response_modalities": ["TEXT"]}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        audio_bytes = Path("sample.pcm").read_bytes()

        await session.send_realtime_input(
            audio=types.Blob(data=audio_bytes, mime_type="audio/pcm;rate=16000")
        )

        # if stream gets paused, send:
        # await session.send_realtime_input(audio_stream_end=True)

        async for response in session.receive():
            if response.text is not None:
                print(response.text)

if __name__ == "__main__":
    asyncio.run(main())

JavaScript

// example audio file to try:
// URL = "https://storage.googleapis.com/generativeai-downloads/data/hello_are_you_there.pcm"
// !wget -q $URL -O sample.pcm
import { GoogleGenAI, Modality } from '@google/genai';
import * as fs from "node:fs";

const ai = new GoogleGenAI({});
const model = 'gemini-live-2.5-flash-preview';
const config = { responseModalities: [Modality.TEXT] };

async function live() {
  const responseQueue = [];

  async function waitMessage() {
    let done = false;
    let message = undefined;
    while (!done) {
      message = responseQueue.shift();
      if (message) {
        done = true;
      } else {
        await new Promise((resolve) => setTimeout(resolve, 100));
      }
    }
    return message;
  }

  async function handleTurn() {
    const turns = [];
    let done = false;
    while (!done) {
      const message = await waitMessage();
      turns.push(message);
      if (message.serverContent && message.serverContent.turnComplete) {
        done = true;
      }
    }
    return turns;
  }

  const session = await ai.live.connect({
    model: model,
    callbacks: {
      onopen: function () {
        console.debug('Opened');
      },
      onmessage: function (message) {
        responseQueue.push(message);
      },
      onerror: function (e) {
        console.debug('Error:', e.message);
      },
      onclose: function (e) {
        console.debug('Close:', e.reason);
      },
    },
    config: config,
  });

  // Send Audio Chunk
  const fileBuffer = fs.readFileSync("sample.pcm");
  const base64Audio = Buffer.from(fileBuffer).toString('base64');

  session.sendRealtimeInput(
    {
      audio: {
        data: base64Audio,
        mimeType: "audio/pcm;rate=16000"
      }
    }

  );

  // if stream gets paused, send:
  // session.sendRealtimeInput({ audioStreamEnd: true })

  const turns = await handleTurn();
  for (const turn of turns) {
    if (turn.text) {
      console.debug('Received text: %s\n', turn.text);
    }
    else if (turn.data) {
      console.debug('Received inline data: %s\n', turn.data);
    }
  }

  session.close();
}

async function main() {
  await live().catch((e) => console.error('got error', e));
}

main();

With send_realtime_input, the API will respond to audio automatically based on VAD. While send_client_content adds messages to the model context in order, send_realtime_input is optimized for responsiveness at the expense of deterministic ordering.

Automatic VAD configuration

For more control over the VAD activity, you can configure the following parameters. See API reference for more info.

Python

from google.genai import types

config = {
    "response_modalities": ["TEXT"],
    "realtime_input_config": {
        "automatic_activity_detection": {
            "disabled": False, # default
            "start_of_speech_sensitivity": types.StartSensitivity.START_SENSITIVITY_LOW,
            "end_of_speech_sensitivity": types.EndSensitivity.END_SENSITIVITY_LOW,
            "prefix_padding_ms": 20,
            "silence_duration_ms": 100,
        }
    }
}

JavaScript

import { GoogleGenAI, Modality, StartSensitivity, EndSensitivity } from '@google/genai';

const config = {
  responseModalities: [Modality.TEXT],
  realtimeInputConfig: {
    automaticActivityDetection: {
      disabled: false, // default
      startOfSpeechSensitivity: StartSensitivity.START_SENSITIVITY_LOW,
      endOfSpeechSensitivity: EndSensitivity.END_SENSITIVITY_LOW,
      prefixPaddingMs: 20,
      silenceDurationMs: 100,
    }
  }
};

Disable automatic VAD

Alternatively, the automatic VAD can be disabled by setting realtimeInputConfig.automaticActivityDetection.disabled to true in the setup message. In this configuration the client is responsible for detecting user speech and sending activityStart and activityEnd messages at the appropriate times. An audioStreamEnd isn't sent in this configuration. Instead, any interruption of the stream is marked by an activityEnd message.

Python

config = {
    "response_modalities": ["TEXT"],
    "realtime_input_config": {"automatic_activity_detection": {"disabled": True}},
}

async with client.aio.live.connect(model=model, config=config) as session:
    # ...
    await session.send_realtime_input(activity_start=types.ActivityStart())
    await session.send_realtime_input(
        audio=types.Blob(data=audio_bytes, mime_type="audio/pcm;rate=16000")
    )
    await session.send_realtime_input(activity_end=types.ActivityEnd())
    # ...

JavaScript

const config = {
  responseModalities: [Modality.TEXT],
  realtimeInputConfig: {
    automaticActivityDetection: {
      disabled: true,
    }
  }
};

session.sendRealtimeInput({ activityStart: {} })

session.sendRealtimeInput(
  {
    audio: {
      data: base64Audio,
      mimeType: "audio/pcm;rate=16000"
    }
  }

);

session.sendRealtimeInput({ activityEnd: {} })

Token count

You can find the total number of consumed tokens in the usageMetadata field of the returned server message.

Python

async for message in session.receive():
    # The server will periodically send messages that include UsageMetadata.
    if message.usage_metadata:
        usage = message.usage_metadata
        print(
            f"Used {usage.total_token_count} tokens in total. Response token breakdown:"
        )
        for detail in usage.response_tokens_details:
            match detail:
                case types.ModalityTokenCount(modality=modality, token_count=count):
                    print(f"{modality}: {count}")

JavaScript

const turns = await handleTurn();

for (const turn of turns) {
  if (turn.usageMetadata) {
    console.debug('Used %s tokens in total. Response token breakdown:\n', turn.usageMetadata.totalTokenCount);

    for (const detail of turn.usageMetadata.responseTokensDetails) {
      console.debug('%s\n', detail);
    }
  }
}

Media resolution

You can specify the media resolution for the input media by setting the mediaResolution field as part of the session configuration:

Python

from google.genai import types

config = {
    "response_modalities": ["AUDIO"],
    "media_resolution": types.MediaResolution.MEDIA_RESOLUTION_LOW,
}

JavaScript

import { GoogleGenAI, Modality, MediaResolution } from '@google/genai';

const config = {
    responseModalities: [Modality.TEXT],
    mediaResolution: MediaResolution.MEDIA_RESOLUTION_LOW,
};

Limitations

Consider the following limitations of the Live API when you plan your project.

Response modalities

You can only set one response modality (TEXT or AUDIO) per session in the session configuration. Setting both results in a config error message. This means that you can configure the model to respond with either text or audio, but not both in the same session.

Client authentication

The Live API only provides server-to-server authentication by default. If you're implementing your Live API application using a client-to-server approach, you need to use ephemeral tokens to mitigate security risks.

Session duration

Audio-only sessions are limited to 15 minutes, and audio plus video sessions are limited to 2 minutes. However, you can configure different session management techniques for unlimited extensions on session duration.

Context window

A session has a context window limit of:

Supported languages

Live API supports the following languages.

Language BCP-47 Code Language BCP-47 Code
German (Germany) de-DE English (Australia)* en-AU
English (UK)* en-GB English (India) en-IN
English (US) en-US Spanish (US) es-US
French (France) fr-FR Hindi (India) hi-IN
Portuguese (Brazil) pt-BR Arabic (Generic) ar-XA
Spanish (Spain)* es-ES French (Canada)* fr-CA
Indonesian (Indonesia) id-ID Italian (Italy) it-IT
Japanese (Japan) ja-JP Turkish (Turkey) tr-TR
Vietnamese (Vietnam) vi-VN Bengali (India) bn-IN
Gujarati (India)* gu-IN Kannada (India)* kn-IN
Marathi (India) mr-IN Malayalam (India)* ml-IN
Tamil (India) ta-IN Telugu (India) te-IN
Dutch (Netherlands) nl-NL Korean (South Korea) ko-KR
Mandarin Chinese (China)* cmn-CN Polish (Poland) pl-PL
Russian (Russia) ru-RU Thai (Thailand) th-TH

Languages marked with an asterisk (*) are not available for Native audio.

What's next