תאימות ל-OpenAI

אפשר לגשת למודלים של Gemini באמצעות ספריות OpenAI (Python ו-TypeScript/JavaScript) יחד עם ה-API ל-REST, על ידי עדכון שלוש שורות קוד ושימוש במפתח ה-API של Gemini. אם אתם עדיין לא משתמשים בספריות של OpenAI, מומלץ להפעיל את Gemini API ישירות.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
    model="gemini-2.0-flash",
    n=1,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {
            "role": "user",
            "content": "Explain to me how AI works"
        }
    ]
)

print(response.choices[0].message)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

const response = await openai.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: [
        { role: "system", content: "You are a helpful assistant." },
        {
            role: "user",
            content: "Explain to me how AI works",
        },
    ],
});

console.log(response.choices[0].message);

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.0-flash",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
    ]
    }'

מה השתנה? רק שלוש שורות!

  • api_key="GEMINI_API_KEY": פשוט מחליפים את 'GEMINI_API_KEY' במפתח ה-API בפועל של Gemini, שאפשר לקבל ב-Google AI Studio.

  • base_url="https://generativelanguage.googleapis.com/v1beta/openai/": הערך הזה מציין לספריית OpenAI לשלוח בקשות לנקודת הקצה של Gemini API במקום לנקודת הקצה הרגילה של OpenAI.

  • model="gemini-2.0-flash": אנחנו מציינים את המודל היעיל והחזק gemini-2.0-flash.

הצגת רשימה של מודלים

כדי לקבל רשימה של המודלים הזמינים של Gemini:

Python

from openai import OpenAI

client = OpenAI(
  api_key="GEMINI_API_KEY",
  base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

models = client.models.list()
for model in models:
  print(model.id)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});

async function main() {
  const list = await openai.models.list();

  for await (const model of list) {
    console.log(model);
  }
}
main();

REST

curl https://generativelanguage.googleapis.com/v1beta/openai/models \
-H "Authorization: Bearer GEMINI_API_KEY"

סטרימינג

ה-Gemini API תומך בשידור תשובות.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
  model="gemini-2.0-flash",
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Hello!"}
  ],
  stream=True
)

for chunk in response:
    print(chunk.choices[0].delta)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const completion = await openai.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: [
      {"role": "system", "content": "You are a helpful assistant."},
      {"role": "user", "content": "Hello!"}
    ],
    stream: true,
  });

  for await (const chunk of completion) {
    console.log(chunk.choices[0].delta.content);
  }
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.0-flash",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
    ],
    "stream": true
  }'

קריאה לפונקציה

קריאה לפונקציות מאפשרת לכם לקבל בקלות רבה יותר פלט של נתונים מובְנים ממודלים גנרטיביים, והיא נתמכת ב-Gemini API.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

tools = [
  {
    "type": "function",
    "function": {
      "name": "get_weather",
      "description": "Get the weather in a given location",
      "parameters": {
        "type": "object",
        "properties": {
          "location": {
            "type": "string",
            "description": "The city and state, e.g. Chicago, IL",
          },
          "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
        },
        "required": ["location"],
      },
    }
  }
]

messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
  model="gemini-2.0-flash",
  messages=messages,
  tools=tools,
  tool_choice="auto"
)

print(response)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}];
  const tools = [
      {
        "type": "function",
        "function": {
          "name": "get_weather",
          "description": "Get the weather in a given location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {
                "type": "string",
                "description": "The city and state, e.g. Chicago, IL",
              },
              "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
            },
            "required": ["location"],
          },
        }
      }
  ];

  const response = await openai.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: messages,
    tools: tools,
    tool_choice: "auto",
  });

  console.log(response);
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
  "model": "gemini-2.0-flash",
  "messages": [
    {
      "role": "user",
      "content": "What'\''s the weather like in Chicago today?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
          "type": "object",
          "properties": {
            "location": {
              "type": "string",
              "description": "The city and state, e.g. Chicago, IL"
            },
            "unit": {
              "type": "string",
              "enum": ["celsius", "fahrenheit"]
            }
          },
          "required": ["location"]
        }
      }
    }
  ],
  "tool_choice": "auto"
}'

הבנת תמונות

המודלים של Gemini הם מולטימודאליים באופן מקורי ומספקים את הביצועים הטובים ביותר בתחום במשימות חזותיות נפוצות רבות.

Python

import base64
from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

# Function to encode the image
def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')

# Getting the base64 string
base64_image = encode_image("Path/to/agi/image.jpeg")

response = client.chat.completions.create(
  model="gemini-2.0-flash",
  messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What is in this image?",
        },
        {
          "type": "image_url",
          "image_url": {
            "url":  f"data:image/jpeg;base64,{base64_image}"
          },
        },
      ],
    }
  ],
)

print(response.choices[0])

Node.js

import OpenAI from "openai";
import fs from 'fs/promises';

const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function encodeImage(imagePath) {
  try {
    const imageBuffer = await fs.readFile(imagePath);
    return imageBuffer.toString('base64');
  } catch (error) {
    console.error("Error encoding image:", error);
    return null;
  }
}

async function main() {
  const imagePath = "Path/to/agi/image.jpeg";
  const base64Image = await encodeImage(imagePath);

  const messages = [
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What is in this image?",
        },
        {
          "type": "image_url",
          "image_url": {
            "url": `data:image/jpeg;base64,${base64Image}`
          },
        },
      ],
    }
  ];

  try {
    const response = await openai.chat.completions.create({
      model: "gemini-2.0-flash",
      messages: messages,
    });

    console.log(response.choices[0]);
  } catch (error) {
    console.error("Error calling Gemini API:", error);
  }
}

main();

REST

bash -c '
  base64_image=$(base64 -i "Path/to/agi/image.jpeg");
  curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer GEMINI_API_KEY" \
    -d "{
      \"model\": \"gemini-2.0-flash\",
      \"messages\": [
        {
          \"role\": \"user\",
          \"content\": [
            { \"type\": \"text\", \"text\": \"What is in this image?\" },
            {
              \"type\": \"image_url\",
              \"image_url\": { \"url\": \"data:image/jpeg;base64,${base64_image}\" }
            }
          ]
        }
      ]
    }"
'

פלט מובנה

מודלים של Gemini יכולים להפיק אובייקטי JSON בכל מבנה שתגדירו.

Python

from pydantic import BaseModel
from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

class CalendarEvent(BaseModel):
    name: str
    date: str
    participants: list[str]

completion = client.beta.chat.completions.parse(
    model="gemini-2.0-flash",
    messages=[
        {"role": "system", "content": "Extract the event information."},
        {"role": "user", "content": "John and Susan are going to an AI conference on Friday."},
    ],
    response_format=CalendarEvent,
)

print(completion.choices[0].message.parsed)

Node.js

import OpenAI from "openai";
import { zodResponseFormat } from "openai/helpers/zod";
import { z } from "zod";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai"
});

const CalendarEvent = z.object({
  name: z.string(),
  date: z.string(),
  participants: z.array(z.string()),
});

const completion = await openai.beta.chat.completions.parse({
  model: "gemini-2.0-flash",
  messages: [
    { role: "system", content: "Extract the event information." },
    { role: "user", content: "John and Susan are going to an AI conference on Friday" },
  ],
  response_format: zodResponseFormat(CalendarEvent, "event"),
});

const event = completion.choices[0].message.parsed;
console.log(event);

הטמעות (embeddings)

הטמעות טקסט מודדות את הקשר בין מחרוזות טקסט, וניתן ליצור אותן באמצעות Gemini API.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.embeddings.create(
    input="Your text string goes here",
    model="text-embedding-004"
)

print(response.data[0].embedding)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const embedding = await openai.embeddings.create({
    model: "text-embedding-004",
    input: "Your text string goes here",
  });

  console.log(embedding);
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "input": "Your text string goes here",
    "model": "text-embedding-004"
  }'

המגבלות הנוכחיות

התמיכה בספריות של OpenAI עדיין בגרסת בטא בזמן שאנחנו מרחיבים את תמיכת התכונות.

אם יש לכם שאלות לגבי הפרמטרים הנתמכים, תכונות עתידיות או אם נתקלתם בבעיות בתחילת העבודה עם Gemini, תוכלו להצטרף לפורום המפתחים שלנו.