באמצעות Gemini API אפשר ליצור פלט טקסט מקלטות שונים, כולל טקסט, תמונות, וידאו ואודיו, תוך ניצול המודלים של Gemini.
זו דוגמה בסיסית שמקבלת קלט טקסט יחיד:
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=["How does AI work?"]
)
print(response.text)
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "How does AI work?",
});
console.log(response.text);
}
await main();
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.0-flash",
genai.Text("Explain how AI works in a few words"),
nil,
)
fmt.Println(result.Text())
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"parts": [
{
"text": "How does AI work?"
}
]
}
]
}'
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const payload = {
contents: [
{
parts: [
{ text: 'How AI does work?' },
],
},
],
};
const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=${apiKey}`;
const options = {
method: 'POST',
contentType: 'application/json',
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
הוראות והגדרות למערכת
אפשר להנחות את ההתנהגות של מודלים של Gemini באמצעות הוראות מערכת. כדי לעשות זאת, מעבירים אובייקט GenerateContentConfig
.
from google import genai
from google.genai import types
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content(
model="gemini-2.0-flash",
config=types.GenerateContentConfig(
system_instruction="You are a cat. Your name is Neko."),
contents="Hello there"
)
print(response.text)
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "Hello there",
config: {
systemInstruction: "You are a cat. Your name is Neko.",
},
});
console.log(response.text);
}
await main();
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
config := &genai.GenerateContentConfig{
SystemInstruction: genai.NewContentFromText("You are a cat. Your name is Neko.", genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.0-flash",
genai.Text("Hello there"),
config,
)
fmt.Println(result.Text())
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
"system_instruction": {
"parts": [
{
"text": "You are a cat. Your name is Neko."
}
]
},
"contents": [
{
"parts": [
{
"text": "Hello there"
}
]
}
]
}'
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const systemInstruction = {
parts: [{
text: 'You are a cat. Your name is Neko.'
}]
};
const payload = {
systemInstruction,
contents: [
{
parts: [
{ text: 'Hello there' },
],
},
],
};
const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=${apiKey}`;
const options = {
method: 'POST',
contentType: 'application/json',
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
האובייקט GenerateContentConfig
מאפשר גם לשנות את הפרמטרים שמוגדרים כברירת מחדל ליצירת נכסים, כמו טמפרטורה.
from google import genai
from google.genai import types
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=["Explain how AI works"],
config=types.GenerateContentConfig(
max_output_tokens=500,
temperature=0.1
)
)
print(response.text)
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "Explain how AI works",
config: {
maxOutputTokens: 500,
temperature: 0.1,
},
});
console.log(response.text);
}
await main();
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
temp := float32(0.9)
topP := float32(0.5)
topK := float32(20.0)
maxOutputTokens := int32(100)
config := &genai.GenerateContentConfig{
Temperature: &temp,
TopP: &topP,
TopK: &topK,
MaxOutputTokens: maxOutputTokens,
ResponseMIMEType: "application/json",
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.0-flash",
genai.Text("What is the average size of a swallow?"),
config,
)
fmt.Println(result.Text())
}
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"parts": [
{
"text": "Explain how AI works"
}
]
}
],
"generationConfig": {
"stopSequences": [
"Title"
],
"temperature": 1.0,
"maxOutputTokens": 800,
"topP": 0.8,
"topK": 10
}
}'
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const generationConfig = {
temperature: 1,
topP: 0.95,
topK: 40,
maxOutputTokens: 8192,
responseMimeType: 'text/plain',
};
const payload = {
generationConfig,
contents: [
{
parts: [
{ text: 'Explain how AI works in a few words' },
],
},
],
};
const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=${apiKey}`;
const options = {
method: 'POST',
contentType: 'application/json',
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
רשימה מלאה של הפרמטרים שניתן להגדיר ותיאורים שלהם מופיעה בקטע GenerateContentConfig
במסמך העזר בנושא API.
קלט מרובה מצבים
Gemini API תומך בקלט במגוון מודלים, ומאפשר לשלב טקסט עם קובצי מדיה. הדוגמה הבאה ממחישה איך מספקים תמונה:
from PIL import Image
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
image = Image.open("/path/to/organ.png")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=[image, "Tell me about this instrument"]
)
print(response.text)
import {
GoogleGenAI,
createUserContent,
createPartFromUri,
} from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const image = await ai.files.upload({
file: "/path/to/organ.png",
});
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: [
createUserContent([
"Tell me about this instrument",
createPartFromUri(image.uri, image.mimeType),
]),
],
});
console.log(response.text);
}
await main();
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
imagePath := "/path/to/organ.jpg"
imgData, _ := os.ReadFile(imagePath)
parts := []*genai.Part{
genai.NewPartFromText("Tell me about this instrument"),
&genai.Part{
InlineData: &genai.Blob{
MIMEType: "image/jpeg",
Data: imgData,
},
},
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.0-flash",
contents,
nil,
)
fmt.Println(result.Text())
}
# Use a temporary file to hold the base64 encoded image data
TEMP_B64=$(mktemp)
trap 'rm -f "$TEMP_B64"' EXIT
base64 $B64FLAGS $IMG_PATH > "$TEMP_B64"
# Use a temporary file to hold the JSON payload
TEMP_JSON=$(mktemp)
trap 'rm -f "$TEMP_JSON"' EXIT
cat > "$TEMP_JSON" << EOF
{
"contents": [
{
"parts": [
{
"text": "Tell me about this instrument"
},
{
"inline_data": {
"mime_type": "image/jpeg",
"data": "$(cat "$TEMP_B64")"
}
}
]
}
]
}
EOF
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d "@$TEMP_JSON"
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const imageUrl = 'http://image/url';
const image = getImageData(imageUrl);
const payload = {
contents: [
{
parts: [
{ image },
{ text: 'Tell me about this instrument' },
],
},
],
};
const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=${apiKey}`;
const options = {
method: 'POST',
contentType: 'application/json',
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
function getImageData(url) {
const blob = UrlFetchApp.fetch(url).getBlob();
return {
mimeType: blob.getContentType(),
data: Utilities.base64Encode(blob.getBytes())
};
}
במדריך להבנת תמונות מפורטות שיטות חלופיות לשליחת תמונות ודרכי עיבוד תמונות מתקדמות יותר. ה-API תומך גם בהזנה ובהבנה של מסמכים, סרטונים ואודיו.
הצגת התשובות באופן שוטף
כברירת מחדל, המודל מחזיר תשובה רק אחרי שכל תהליך היצירה מסתיים.
כדי ליצור אינטראקציות חלקות יותר, מומלץ להשתמש בסטרימינג כדי לקבל מכונות GenerateContentResponse
באופן מצטבר כשהן נוצרות.
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content_stream(
model="gemini-2.0-flash",
contents=["Explain how AI works"]
)
for chunk in response:
print(chunk.text, end="")
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const response = await ai.models.generateContentStream({
model: "gemini-2.0-flash",
contents: "Explain how AI works",
});
for await (const chunk of response) {
console.log(chunk.text);
}
}
await main();
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
stream := client.Models.GenerateContentStream(
ctx,
"gemini-2.0-flash",
genai.Text("Write a story about a magic backpack."),
nil,
)
for chunk, _ := range stream {
part := chunk.Candidates[0].Content.Parts[0]
fmt.Print(part.Text)
}
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=${GEMINI_API_KEY}" \
-H 'Content-Type: application/json' \
--no-buffer \
-d '{
"contents": [
{
"parts": [
{
"text": "Explain how AI works"
}
]
}
]
}'
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const payload = {
contents: [
{
parts: [
{ text: 'Explain how AI works' },
],
},
],
};
const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?key=${apiKey}`;
const options = {
method: 'POST',
contentType: 'application/json',
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
שיחות עם זיכרון (Chat)
ערכות ה-SDK שלנו מספקות פונקציונליות לאיסוף כמה סיבובים של הנחיות ותשובות בצ'אט, וכך מאפשרות לכם לעקוב בקלות אחרי היסטוריית השיחה.
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
chat = client.chats.create(model="gemini-2.0-flash")
response = chat.send_message("I have 2 dogs in my house.")
print(response.text)
response = chat.send_message("How many paws are in my house?")
print(response.text)
for message in chat.get_history():
print(f'role - {message.role}',end=": ")
print(message.parts[0].text)
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const chat = ai.chats.create({
model: "gemini-2.0-flash",
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
const response1 = await chat.sendMessage({
message: "I have 2 dogs in my house.",
});
console.log("Chat response 1:", response1.text);
const response2 = await chat.sendMessage({
message: "How many paws are in my house?",
});
console.log("Chat response 2:", response2.text);
}
await main();
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
history := []*genai.Content{
genai.NewContentFromText("Hi nice to meet you! I have 2 dogs in my house.", genai.RoleUser),
genai.NewContentFromText("Great to meet you. What would you like to know?", genai.RoleModel),
}
chat, _ := client.Chats.Create(ctx, "gemini-2.0-flash", nil, history)
res, _ := chat.SendMessage(ctx, genai.Part{Text: "How many paws are in my house?"})
if len(res.Candidates) > 0 {
fmt.Println(res.Candidates[0].Content.Parts[0].Text)
}
}
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"role": "user",
"parts": [
{
"text": "Hello"
}
]
},
{
"role": "model",
"parts": [
{
"text": "Great to meet you. What would you like to know?"
}
]
},
{
"role": "user",
"parts": [
{
"text": "I have two dogs in my house. How many paws are in my house?"
}
]
}
]
}'
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const payload = {
contents: [
{
role: 'user',
parts: [
{ text: 'Hello' },
],
},
{
role: 'model',
parts: [
{ text: 'Great to meet you. What would you like to know?' },
],
},
{
role: 'user',
parts: [
{ text: 'I have two dogs in my house. How many paws are in my house?' },
],
},
],
};
const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=${apiKey}`;
const options = {
method: 'POST',
contentType: 'application/json',
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
אפשר להשתמש בסטרימינג גם בשיחות עם כמה תורנים.
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
chat = client.chats.create(model="gemini-2.0-flash")
response = chat.send_message_stream("I have 2 dogs in my house.")
for chunk in response:
print(chunk.text, end="")
response = chat.send_message_stream("How many paws are in my house?")
for chunk in response:
print(chunk.text, end="")
for message in chat.get_history():
print(f'role - {message.role}', end=": ")
print(message.parts[0].text)
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const chat = ai.chats.create({
model: "gemini-2.0-flash",
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
const stream1 = await chat.sendMessageStream({
message: "I have 2 dogs in my house.",
});
for await (const chunk of stream1) {
console.log(chunk.text);
console.log("_".repeat(80));
}
const stream2 = await chat.sendMessageStream({
message: "How many paws are in my house?",
});
for await (const chunk of stream2) {
console.log(chunk.text);
console.log("_".repeat(80));
}
}
await main();
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
history := []*genai.Content{
genai.NewContentFromText("Hi nice to meet you! I have 2 dogs in my house.", genai.RoleUser),
genai.NewContentFromText("Great to meet you. What would you like to know?", genai.RoleModel),
}
chat, _ := client.Chats.Create(ctx, "gemini-2.0-flash", nil, history)
stream := chat.SendMessageStream(ctx, genai.Part{Text: "How many paws are in my house?"})
for chunk, _ := range stream {
part := chunk.Candidates[0].Content.Parts[0]
fmt.Print(part.Text)
}
}
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"role": "user",
"parts": [
{
"text": "Hello"
}
]
},
{
"role": "model",
"parts": [
{
"text": "Great to meet you. What would you like to know?"
}
]
},
{
"role": "user",
"parts": [
{
"text": "I have two dogs in my house. How many paws are in my house?"
}
]
}
]
}'
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');
function main() {
const payload = {
contents: [
{
role: 'user',
parts: [
{ text: 'Hello' },
],
},
{
role: 'model',
parts: [
{ text: 'Great to meet you. What would you like to know?' },
],
},
{
role: 'user',
parts: [
{ text: 'I have two dogs in my house. How many paws are in my house?' },
],
},
],
};
const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?key=${apiKey}`;
const options = {
method: 'POST',
contentType: 'application/json',
payload: JSON.stringify(payload)
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response);
const content = data['candidates'][0]['content']['parts'][0]['text'];
console.log(content);
}
מודלים נתמכים
כל הדגמים במשפחת Gemini תומכים ביצירת טקסט. מידע נוסף על המודלים ועל היכולות שלהם זמין בדף מודלים.
שיטות מומלצות
טיפים לכתיבת הנחיות
ליצירת טקסט בסיסי, לרוב מספיקה הנחיה ללא אימון, בלי צורך בדוגמאות, בהוראות למערכת או בתבנית ספציפית.
כדי ליצור פלטים מותאמים אישית יותר:
- משתמשים בהוראות המערכת כדי להנחות את המודל.
- מספקים כמה דוגמאות של קלט ופלט כדי להנחות את המודל. השיטה הזו נקראת בדרך כלל הנחיה ב-few-shot.
- כדאי לשקול התאמה אישית לתרחישי שימוש מתקדמים.
טיפים נוספים זמינים במדריך להנדסת הנחיות.
פלט מובנה
במקרים מסוימים, יכול להיות שתצטרכו פלט מובנה, כמו JSON. במדריך בנושא פלט מובנה מוסבר איך עושים זאת.
המאמרים הבאים
- כדאי לנסות את ה-Colab למתחילים ב-Gemini API.
- בודקים את היכולות של Gemini להבין תמונות, סרטונים, אודיו ומסמכים.
- מידע נוסף על שיטות להצגת הנחיות לבחירת קובץ