Entender e contar tokens

O Gemini e outros modelos de IA generativa processam entradas e saídas em uma granularidade chamada token.

Para modelos do Gemini, um token equivale a cerca de quatro caracteres. 100 tokens equivalem a cerca de 60 a 80 palavras em inglês.

Sobre tokens

Os tokens podem ser caracteres únicos, como z, ou palavras inteiras, como cat. Palavras longas são divididas em vários tokens. O conjunto de todos os tokens usados pelo modelo é chamado de vocabulário, e o processo de dividir o texto em tokens é chamado de tokenização.

Quando o faturamento está ativado, o custo de uma chamada para a API Gemini é determinado em parte pelo número de tokens de entrada e saída. Por isso, saber como contar tokens pode ser útil.

Você pode testar a contagem de tokens no nosso Colab.

Ver em ai.google.dev Testar um notebook do Colab Conferir o notebook no GitHub

Contar tokens

Todas as entradas e saídas da API Gemini são tokenizadas, incluindo texto, arquivos de imagem e outras modalidades que não são de texto.

É possível contar tokens das seguintes maneiras:

  • Chame count_tokens com a entrada da solicitação.
    Isso retorna o número total de tokens apenas na entrada. É possível fazer essa chamada antes de enviar a entrada ao modelo para verificar o tamanho das solicitações.

  • Use o atributo usage_metadata no objeto response depois de chamar generate_content.
    Isso retorna o número total de tokens em a entrada e a saída: total_token_count.
    Ele também retorna as contagens de tokens da entrada e da saída separadamente: prompt_token_count (tokens de entrada) e candidates_token_count (tokens de saída).

    Se você estiver usando um modelo de raciocínio, os tokens usados durante o processo de raciocínio serão retornados em thoughts_token_count. Se você estiver usando o armazenamento em cache de contexto, a contagem de tokens armazenados em cache estará em cached_content_token_count.

Contar tokens de texto

Se você chamar count_tokens com uma entrada somente de texto, ele vai retornar a contagem de tokens do texto apenas na entrada (total_tokens). É possível fazer essa chamada antes de chamar generate_content para verificar o tamanho das solicitações.

Outra opção é chamar generate_content e usar o atributo usage_metadata no objeto response para receber o seguinte:

  • As contagens de tokens separadas da entrada (prompt_token_count), do conteúdo em cache (cached_content_token_count) e da saída (candidates_token_count).
  • A contagem de tokens para o processo de raciocínio (thoughts_token_count)
  • O número total de tokens na entrada e na saída (total_token_count)

Python

from google import genai

client = genai.Client()
prompt = "The quick brown fox jumps over the lazy dog."

total_tokens = client.models.count_tokens(
    model="gemini-3-flash-preview", contents=prompt
)
print("total_tokens: ", total_tokens)

response = client.models.generate_content(
    model="gemini-3-flash-preview", contents=prompt
)

print(response.usage_metadata)

JavaScript

import { GoogleGenAI } from '@google/genai';

const ai = new GoogleGenAI({});
const prompt = "The quick brown fox jumps over the lazy dog.";

async function main() {
  const countTokensResponse = await ai.models.countTokens({
    model: "gemini-3-flash-preview",
    contents: prompt,
  });
  console.log(countTokensResponse.totalTokens);

  const generateResponse = await ai.models.generateContent({
    model: "gemini-3-flash-preview",
    contents: prompt,
  });
  console.log(generateResponse.usageMetadata);
}

await main();

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)

// Convert prompt to a slice of *genai.Content using the helper.
contents := []*genai.Content{
  genai.NewContentFromText(prompt, genai.RoleUser),
}
countResp, err := client.Models.CountTokens(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  return err
}
fmt.Println("total_tokens:", countResp.TotalTokens)

response, err := client.Models.GenerateContent(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
usageMetadata, err := json.MarshalIndent(response.UsageMetadata, "", "  ")
if err != nil {
  log.Fatal(err)
}
fmt.Println(string(usageMetadata))
    ```

Contar tokens multiturno (chat)

Se você chamar count_tokens com o histórico de chat, ele vai retornar a contagem total de tokens do texto de cada função no chat (total_tokens).

Outra opção é chamar send_message e usar o atributo usage_metadata no objeto response para receber o seguinte:

  • As contagens de tokens separadas da entrada (prompt_token_count), do conteúdo em cache (cached_content_token_count) e da saída (candidates_token_count).
  • A contagem de tokens para o processo de raciocínio (thoughts_token_count)
  • O número total de tokens na entrada e na saída (total_token_count)

Para entender o tamanho da próxima conversa, adicione-a ao histórico ao chamar count_tokens.

Python

from google import genai
from google.genai import types

client = genai.Client()

chat = client.chats.create(
    model="gemini-3-flash-preview",
    history=[
        types.Content(
            role="user", parts=[types.Part(text="Hi my name is Bob")]
        ),
        types.Content(role="model", parts=[types.Part(text="Hi Bob!")]),
    ],
)

print(
    client.models.count_tokens(
        model="gemini-3-flash-preview", contents=chat.get_history()
    )
)

response = chat.send_message(
    message="In one sentence, explain how a computer works to a young child."
)
print(response.usage_metadata)

extra = types.UserContent(
    parts=[
        types.Part(
            text="What is the meaning of life?",
        )
    ]
)
history = [*chat.get_history(), extra]
print(client.models.count_tokens(model="gemini-3-flash-preview", contents=history))

JavaScript

import { GoogleGenAI } from '@google/genai';

const ai = new GoogleGenAI({});

async function main() {
  const history = [
    { role: "user", parts: [{ text: "Hi my name is Bob" }] },
    { role: "model", parts: [{ text: "Hi Bob!" }] },
  ];
  const chat = ai.chats.create({
    model: "gemini-3-flash-preview",
    history: history,
  });

  const countTokensResponse = await ai.models.countTokens({
    model: "gemini-3-flash-preview",
    contents: chat.getHistory(),
  });
  console.log(countTokensResponse.totalTokens);

  const chatResponse = await chat.sendMessage({
    message: "In one sentence, explain how a computer works to a young child.",
  });
  console.log(chatResponse.usageMetadata);

  const extraMessage = {
    role: "user",
    parts: [{ text: "What is the meaning of life?" }],
  };
  const combinedHistory = [...chat.getHistory(), extraMessage];
  const combinedCountTokensResponse = await ai.models.countTokens({
    model: "gemini-3-flash-preview",
    contents: combinedHistory,
  });
  console.log(
    "Combined history token count:",
    combinedCountTokensResponse.totalTokens,
  );
}

await main();

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)

history := []*genai.Content{
  {Role: genai.RoleUser, Parts: []*genai.Part({Text: "Hi my name is Bob"})},
  {Role: genai.RoleModel, Parts: []*genai.Part({Text: "Hi Bob!"})},
}
chat, err := client.Chats.Create(ctx, "gemini-3-flash-preview", nil, history)
if err != nil {
  log.Fatal(err)
}

firstTokenResp, err := client.Models.CountTokens(ctx, "gemini-3-flash-preview", chat.History(false), nil)
if err != nil {
  log.Fatal(err)
}
fmt.Println(firstTokenResp.TotalTokens)

resp, err := chat.SendMessage(ctx, genai.NewPartFromText("In one sentence, explain how a computer works to a young child."))
if err != nil {
  log.Fatal(err)
}
fmt.Printf("%#v\n", resp.UsageMetadata)

extra := genai.NewContentFromText("What is the meaning of life?", genai.RoleUser)
hist := chat.History(false)
hist = append(hist, extra)

secondTokenResp, err := client.Models.CountTokens(ctx, "gemini-3-flash-preview", hist, nil)
if err != nil {
  log.Fatal(err)
}
fmt.Println(secondTokenResp.TotalTokens)

Contar tokens multimodais

Todas as entradas da API Gemini são tokenizadas, incluindo texto, arquivos de imagem e outras modalidades não textuais. Confira os principais pontos sobre a tokenização de entradas multimodais durante o processamento pela API Gemini:

  • Entradas de imagem com ambas as dimensões <=384 pixels são contadas como 258 tokens. Imagens maiores em uma ou ambas as dimensões são cortadas e dimensionadas conforme necessário em blocos de 768 x 768 pixels, cada um contado como 258 tokens.

  • Os arquivos de vídeo e áudio são convertidos em tokens nas seguintes taxas fixas: vídeo a 263 tokens por segundo e áudio a 32 tokens por segundo.

Resoluções de mídia

Os modelos de pré-lançamento do Gemini 3 Pro e do 3 Flash introduzem um controle granular sobre o processamento de visão multimodal com o parâmetro media_resolution. O parâmetro media_resolution determina o número máximo de tokens alocados por imagem de entrada ou frame de vídeo. Resoluções mais altas melhoram a capacidade do modelo de ler textos pequenos ou identificar detalhes, mas aumentam o uso de tokens e a latência.

Para mais detalhes sobre o parâmetro e como ele pode afetar os cálculos de token, consulte o guia de resolução de mídia.

Arquivos de imagem

Se você chamar count_tokens com uma entrada de texto e imagem, ele vai retornar a contagem combinada de tokens do texto e da imagem apenas na entrada (total_tokens). Você pode fazer essa chamada antes de chamar generate_content para verificar o tamanho das suas solicitações. Você também pode chamar count_tokens no texto e no arquivo separadamente.

Outra opção é chamar generate_content e usar o atributo usage_metadata no objeto response para receber o seguinte:

  • As contagens de tokens separadas da entrada (prompt_token_count), do conteúdo em cache (cached_content_token_count) e da saída (candidates_token_count).
  • A contagem de tokens para o processo de raciocínio (thoughts_token_count)
  • O número total de tokens na entrada e na saída (total_token_count)

Exemplo que usa uma imagem enviada da API File:

Python

from google import genai

client = genai.Client()
prompt = "Tell me about this image"
your_image_file = client.files.upload(file=media / "organ.jpg")

print(
    client.models.count_tokens(
        model="gemini-3-flash-preview", contents=[prompt, your_image_file]
    )
)

response = client.models.generate_content(
    model="gemini-3-flash-preview", contents=[prompt, your_image_file]
)
print(response.usage_metadata)

JavaScript

import { GoogleGenAI } from '@google/genai';

const ai = new GoogleGenAI({});
const prompt = "Tell me about this image";

async function main() {
  const organ = await ai.files.upload({
    file: path.join(media, "organ.jpg"),
    config: { mimeType: "image/jpeg" },
  });

  const countTokensResponse = await ai.models.countTokens({
    model: "gemini-3-flash-preview",
    contents: createUserContent([
      prompt,
      createPartFromUri(organ.uri, organ.mimeType),
    ]),
  });
  console.log(countTokensResponse.totalTokens);

  const generateResponse = await ai.models.generateContent({
    model: "gemini-3-flash-preview",
    contents: createUserContent([
      prompt,
      createPartFromUri(organ.uri, organ.mimeType),
    ]),
  });
  console.log(generateResponse.usageMetadata);
}

await main();

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)

file, err := client.Files.UploadFromPath(
  ctx, 
  filepath.Join(getMedia(), "organ.jpg"), 
  &genai.UploadFileConfig{
    MIMEType : "image/jpeg",
  },
)
if err != nil {
  log.Fatal(err)
}
parts := []*genai.Part{
  genai.NewPartFromText("Tell me about this image"),
  genai.NewPartFromURI(file.URI, file.MIMEType),
}
contents := []*genai.Content{
  genai.NewContentFromParts(parts, genai.RoleUser),
}

tokenResp, err := client.Models.CountTokens(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
fmt.Println("Multimodal image token count:", tokenResp.TotalTokens)

response, err := client.Models.GenerateContent(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
usageMetadata, err := json.MarshalIndent(response.UsageMetadata, "", "  ")
if err != nil {
  log.Fatal(err)
}
fmt.Println(string(usageMetadata))

Exemplo que fornece a imagem como dados inline:

Python

from google import genai
import PIL.Image

client = genai.Client()
prompt = "Tell me about this image"
your_image_file = PIL.Image.open(media / "organ.jpg")

print(
    client.models.count_tokens(
        model="gemini-3-flash-preview", contents=[prompt, your_image_file]
    )
)

response = client.models.generate_content(
    model="gemini-3-flash-preview", contents=[prompt, your_image_file]
)
print(response.usage_metadata)

JavaScript

import { GoogleGenAI } from '@google/genai';

const ai = new GoogleGenAI({});
const prompt = "Tell me about this image";
const imageBuffer = fs.readFileSync(path.join(media, "organ.jpg"));

const imageBase64 = imageBuffer.toString("base64");

const contents = createUserContent([
  prompt,
  createPartFromBase64(imageBase64, "image/jpeg"),
]);

async function main() {
  const countTokensResponse = await ai.models.countTokens({
    model: "gemini-3-flash-preview",
    contents: contents,
  });
  console.log(countTokensResponse.totalTokens);

  const generateResponse = await ai.models.generateContent({
    model: "gemini-3-flash-preview",
    contents: contents,
  });
  console.log(generateResponse.usageMetadata);
}

await main();

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)

imageBytes, err := os.ReadFile("organ.jpg")
if err != nil {
    log.Fatalf("Failed to read image file: %v", err)
}
parts := []*genai.Part{
  genai.NewPartFromText("Tell me about this image"),
  {
        InlineData: &genai.Blob{
              MIMEType: "image/jpeg",
              Data:     imageBytes,
        },
  },
}
contents := []*genai.Content{
  genai.NewContentFromParts(parts, genai.RoleUser),
}

tokenResp, err := client.Models.CountTokens(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
fmt.Println("Multimodal image token count:", tokenResp.TotalTokens)

response, err := client.Models.GenerateContent(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
usageMetadata, err := json.MarshalIndent(response.UsageMetadata, "", "  ")
if err != nil {
  log.Fatal(err)
}
fmt.Println(string(usageMetadata))

Arquivos de vídeo ou áudio

O áudio e o vídeo são convertidos em tokens nas seguintes taxas fixas:

  • Vídeo: 263 tokens por segundo
  • Áudio: 32 tokens por segundo

Se você chamar count_tokens com uma entrada de texto e vídeo/áudio, ele vai retornar a contagem combinada de tokens do texto e do arquivo de vídeo/áudio apenas na entrada (total_tokens). Você pode fazer essa chamada antes de chamar generate_content para verificar o tamanho das suas solicitações. Também é possível chamar count_tokens no texto e no arquivo separadamente.

Outra opção é chamar generate_content e usar o atributo usage_metadata no objeto response para receber o seguinte:

  • As contagens de tokens separadas da entrada (prompt_token_count), do conteúdo em cache (cached_content_token_count) e da saída (candidates_token_count).
  • A contagem de tokens para o processo de raciocínio (thoughts_token_count)
  • O número total de tokens na entrada e na saída (total_token_count).

Python

from google import genai
import time

client = genai.Client()
prompt = "Tell me about this video"
your_file = client.files.upload(file=media / "Big_Buck_Bunny.mp4")

while not your_file.state or your_file.state.name != "ACTIVE":
    print("Processing video...")
    print("File state:", your_file.state)
    time.sleep(5)
    your_file = client.files.get(name=your_file.name)

print(
    client.models.count_tokens(
        model="gemini-3-flash-preview", contents=[prompt, your_file]
    )
)

response = client.models.generate_content(
    model="gemini-3-flash-preview", contents=[prompt, your_file]
)
print(response.usage_metadata)

JavaScript

import { GoogleGenAI } from '@google/genai';

const ai = new GoogleGenAI({});
const prompt = "Tell me about this video";

async function main() {
  let videoFile = await ai.files.upload({
    file: path.join(media, "Big_Buck_Bunny.mp4"),
    config: { mimeType: "video/mp4" },
  });

  while (!videoFile.state || videoFile.state.toString() !== "ACTIVE") {
    console.log("Processing video...");
    console.log("File state: ", videoFile.state);
    await sleep(5000);
    videoFile = await ai.files.get({ name: videoFile.name });
  }

  const countTokensResponse = await ai.models.countTokens({
    model: "gemini-3-flash-preview",
    contents: createUserContent([
      prompt,
      createPartFromUri(videoFile.uri, videoFile.mimeType),
    ]),
  });
  console.log(countTokensResponse.totalTokens);

  const generateResponse = await ai.models.generateContent({
    model: "gemini-3-flash-preview",
    contents: createUserContent([
      prompt,
      createPartFromUri(videoFile.uri, videoFile.mimeType),
    ]),
  });
  console.log(generateResponse.usageMetadata);
}

await main();

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)

file, err := client.Files.UploadFromPath(
  ctx,
  filepath.Join(getMedia(), "Big_Buck_Bunny.mp4"),
  &genai.UploadFileConfig{
    MIMEType : "video/mp4",
  },
)
if err != nil {
  log.Fatal(err)
}

for file.State == genai.FileStateUnspecified || file.State != genai.FileStateActive {
  fmt.Println("Processing video...")
  fmt.Println("File state:", file.State)
  time.Sleep(5 * time.Second)

  file, err = client.Files.Get(ctx, file.Name, nil)
  if err != nil {
    log.Fatal(err)
  }
}

parts := []*genai.Part{
  genai.NewPartFromText("Tell me about this video"),
  genai.NewPartFromURI(file.URI, file.MIMEType),
}
contents := []*genai.Content{
  genai.NewContentFromParts(parts, genai.RoleUser),
}

tokenResp, err := client.Models.CountTokens(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
fmt.Println("Multimodal video/audio token count:", tokenResp.TotalTokens)
response, err := client.Models.GenerateContent(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
usageMetadata, err := json.MarshalIndent(response.UsageMetadata, "", "  ")
if err != nil {
  log.Fatal(err)
}
fmt.Println(string(usageMetadata))

Janelas de contexto

Os modelos disponíveis na API Gemini têm janelas de contexto medidas em tokens. A janela de contexto define a quantidade de entrada que você pode fornecer e a quantidade de saída que o modelo pode gerar. Para determinar o tamanho da janela de contexto, chame o endpoint models.get ou consulte a documentação de modelos.

Python

from google import genai

client = genai.Client()
model_info = client.models.get(model="gemini-3-flash-preview")
print(f"{model_info.input_token_limit=}")
print(f"{model_info.output_token_limit=}")

JavaScript

import { GoogleGenAI } from '@google/genai';

const ai = new GoogleGenAI({});

async function main() {
  const modelInfo = await ai.models.get({model: 'gemini-3-flash-preview'});
  console.log(modelInfo.inputTokenLimit);
  console.log(modelInfo.outputTokenLimit);
}

await main();

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
  log.Fatal(err)
}
modelInfo, err := client.ModelInfo(ctx, "models/gemini-3-flash-preview")
if err != nil {
  log.Fatal(err)
}
fmt.Println("input token limit:", modelInfo.InputTokenLimit)
fmt.Println("output token limit:", modelInfo.OutputTokenLimit)