動画生成については、Veo ガイドをご覧ください。
Gemini モデルは動画を処理できるため、これまでドメイン固有のモデルが必要だった多くの最先端のデベロッパー ユースケースを実現できます。Gemini のビジョン機能には、動画の説明、セグメント化、情報の抽出、動画コンテンツに関する質問への回答、動画内の特定のタイムスタンプの参照などがあります。
Gemini に動画を入力するには、次の方法があります。
Gemini に動画を入力する方法をいくつかご紹介します。
- リクエストを行う前に、File API を使用して動画ファイルをアップロードします。このアプローチは、100 MB を超えるファイル、約 1 分を超える動画、または複数のリクエストでファイルを再利用する場合に使用します。
- リクエストでインライン動画データを渡します。この方法は、小さいファイル(100 MB 未満)や短い時間に適しています。
- リクエストの一部として YouTube の URL を渡します。
外部 URL の使用や Google Cloud に保存されたファイルの使用など、他のファイル入力方法については、ファイル入力方法ガイドをご覧ください。
動画ファイルをアップロードする
次のコードは、サンプル動画をダウンロードし、Files API を使用してアップロードし、処理が完了するまで待機してから、アップロードされたファイル参照を使用して動画を要約します。
Python
from google import genai
client = genai.Client()
myfile = client.files.upload(file="path/to/sample.mp4")
response = client.models.generate_content(
model="gemini-3-flash-preview", contents=[myfile, "Summarize this video. Then create a quiz with an answer key based on the information in this video."]
)
print(response.text)
JavaScript
import {
GoogleGenAI,
createUserContent,
createPartFromUri,
} from "@google/genai";
const ai = new GoogleGenAI({});
async function main() {
const myfile = await ai.files.upload({
file: "path/to/sample.mp4",
config: { mimeType: "video/mp4" },
});
const response = await ai.models.generateContent({
model: "gemini-3-flash-preview",
contents: createUserContent([
createPartFromUri(myfile.uri, myfile.mimeType),
"Summarize this video. Then create a quiz with an answer key based on the information in this video.",
]),
});
console.log(response.text);
}
await main();
Go
uploadedFile, _ := client.Files.UploadFromPath(ctx, "path/to/sample.mp4", nil)
parts := []*genai.Part{
genai.NewPartFromText("Summarize this video. Then create a quiz with an answer key based on the information in this video."),
genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-3-flash-preview",
contents,
nil,
)
fmt.Println(result.Text())
REST
VIDEO_PATH="path/to/sample.mp4"
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO
tmp_header_file=upload-header.tmp
echo "Starting file upload..."
curl "https://generativelanguage.googleapis.com/upload/v1beta/files" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-D ${tmp_header_file} \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
echo "Uploading video data..."
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json
file_uri=$(jq -r ".file.uri" file_info.json)
echo file_uri=$file_uri
echo "File uploaded successfully. File URI: ${file_uri}"
# --- 3. Generate content using the uploaded video file ---
echo "Generating content from video..."
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-flash-preview:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"file_data":{"mime_type": "'"${MIME_TYPE}"'", "file_uri": "'"${file_uri}"'"}},
{"text": "Summarize this video. Then create a quiz with an answer key based on the information in this video."}]
}]
}' 2> /dev/null > response.json
jq -r ".candidates[].content.parts[].text" response.json
リクエストの合計サイズ(ファイル、テキスト プロンプト、システム指示などを含む)が 20 MB を超える場合、動画の長さが長い場合、または複数のプロンプトで同じ動画を使用する場合は、常に Files API を使用します。File API は動画ファイル形式を直接受け入れます。
メディア ファイルの操作の詳細については、Files API をご覧ください。
動画データをインラインで渡す
File API を使用して動画ファイルをアップロードする代わりに、generateContent へのリクエストで小さな動画を直接渡すことができます。これは、合計リクエスト サイズが 20 MB 未満の短い動画に適しています。
インライン動画データを提供する例を次に示します。
Python
from google import genai
from google.genai import types
# Only for videos of size <20Mb
video_file_name = "/path/to/your/video.mp4"
video_bytes = open(video_file_name, 'rb').read()
client = genai.Client()
response = client.models.generate_content(
model='models/gemini-3-flash-preview',
contents=types.Content(
parts=[
types.Part(
inline_data=types.Blob(data=video_bytes, mime_type='video/mp4')
),
types.Part(text='Please summarize the video in 3 sentences.')
]
)
)
print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";
const ai = new GoogleGenAI({});
const base64VideoFile = fs.readFileSync("path/to/small-sample.mp4", {
encoding: "base64",
});
const contents = [
{
inlineData: {
mimeType: "video/mp4",
data: base64VideoFile,
},
},
{ text: "Please summarize the video in 3 sentences." }
];
const response = await ai.models.generateContent({
model: "gemini-3-flash-preview",
contents: contents,
});
console.log(response.text);
REST
VIDEO_PATH=/path/to/your/video.mp4
if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
B64FLAGS="--input"
else
B64FLAGS="-w0"
fi
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-flash-preview:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{
"inline_data": {
"mime_type":"video/mp4",
"data": "'$(base64 $B64FLAGS $VIDEO_PATH)'"
}
},
{"text": "Please summarize the video in 3 sentences."}
]
}]
}' 2> /dev/null
YouTube の URL を渡す
次のように、リクエストの一部として YouTube の URL を Gemini API に直接渡すことができます。
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='models/gemini-3-flash-preview',
contents=types.Content(
parts=[
types.Part(
file_data=types.FileData(file_uri='https://www.youtube.com/watch?v=9hE5-98ZeCg')
),
types.Part(text='Please summarize the video in 3 sentences.')
]
)
)
print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({});
const contents = [
{
fileData: {
fileUri: "https://www.youtube.com/watch?v=9hE5-98ZeCg",
},
},
{ text: "Please summarize the video in 3 sentences." }
];
const response = await ai.models.generateContent({
model: "gemini-3-flash-preview",
contents: contents,
});
console.log(response.text);
Go
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
parts := []*genai.Part{
genai.NewPartFromText("Please summarize the video in 3 sentences."),
genai.NewPartFromURI("https://www.youtube.com/watch?v=9hE5-98ZeCg","video/mp4"),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-3-flash-preview",
contents,
nil,
)
fmt.Println(result.Text())
}
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-flash-preview:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "Please summarize the video in 3 sentences."},
{
"file_data": {
"file_uri": "https://www.youtube.com/watch?v=9hE5-98ZeCg"
}
}
]
}]
}' 2> /dev/null
制限事項:
- 無料プランでは、1 日に 8 時間を超える YouTube 動画をアップロードすることはできません。
- 有料プランでは、動画の長さに基づく制限はありません。
- Gemini 2.5 より前のモデルでは、リクエストごとに 1 つの動画しかアップロードできません。Gemini 2.5 以降のモデルでは、リクエストごとに最大 10 個の動画をアップロードできます。
- アップロードできるのは公開動画のみです(非公開動画や限定公開動画はアップロードできません)。
コンテンツ内のタイムスタンプを参照する
MM:SS 形式のタイムスタンプを使用して、動画内の特定の時点に関する質問をすることができます。
Python
prompt = "What are the examples given at 00:05 and 00:10 supposed to show us?" # Adjusted timestamps for the NASA video
JavaScript
const prompt = "What are the examples given at 00:05 and 00:10 supposed to show us?";
Go
prompt := []*genai.Part{
genai.NewPartFromURI(currentVideoFile.URI, currentVideoFile.MIMEType),
// Adjusted timestamps for the NASA video
genai.NewPartFromText("What are the examples given at 00:05 and " +
"00:10 supposed to show us?"),
}
REST
PROMPT="What are the examples given at 00:05 and 00:10 supposed to show us?"
動画から詳細な分析情報を抽出する
Gemini モデルは、音声ストリームとビジュアル ストリームの両方から情報を処理することで、動画コンテンツを理解する強力な機能を提供します。これにより、動画で何が起こっているかの説明を生成したり、動画の内容に関する質問に回答したりするなど、詳細な情報を抽出できます。視覚的な説明の場合、モデルは 1 秒あたり 1 フレームのレートで動画をサンプリングします。このサンプリング レートは、特に映像が急速に変化する動画の場合、説明の詳細レベルに影響する可能性があります。
Python
prompt = "Describe the key events in this video, providing both audio and visual details. Include timestamps for salient moments."
JavaScript
const prompt = "Describe the key events in this video, providing both audio and visual details. Include timestamps for salient moments.";
Go
prompt := []*genai.Part{
genai.NewPartFromURI(currentVideoFile.URI, currentVideoFile.MIMEType),
genai.NewPartFromText("Describe the key events in this video, providing both audio and visual details. " +
"Include timestamps for salient moments."),
}
REST
PROMPT="Describe the key events in this video, providing both audio and visual details. Include timestamps for salient moments."
動画処理をカスタマイズする
Gemini API で、クリッピング間隔を設定するか、カスタム フレームレート サンプリングを指定することで、動画処理をカスタマイズできます。
クリッピング間隔を設定する
開始オフセットと終了オフセットで videoMetadata を指定すると、動画をクリップできます。
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='models/gemini-3-flash-preview',
contents=types.Content(
parts=[
types.Part(
file_data=types.FileData(file_uri='https://www.youtube.com/watch?v=XEzRZ35urlk'),
video_metadata=types.VideoMetadata(
start_offset='1250s',
end_offset='1570s'
)
),
types.Part(text='Please summarize the video in 3 sentences.')
]
)
)
JavaScript
import { GoogleGenAI } from '@google/genai';
const ai = new GoogleGenAI({});
const model = 'gemini-3-flash-preview';
async function main() {
const contents = [
{
role: 'user',
parts: [
{
fileData: {
fileUri: 'https://www.youtube.com/watch?v=9hE5-98ZeCg',
mimeType: 'video/*',
},
videoMetadata: {
startOffset: '40s',
endOffset: '80s',
}
},
{
text: 'Please summarize the video in 3 sentences.',
},
],
},
];
const response = await ai.models.generateContent({
model,
contents,
});
console.log(response.text)
}
await main();
カスタム フレームレートを設定する
videoMetadata に fps 引数を渡すことで、カスタム フレームレート サンプリングを設定できます。
Python
from google import genai
from google.genai import types
# Only for videos of size <20Mb
video_file_name = "/path/to/your/video.mp4"
video_bytes = open(video_file_name, 'rb').read()
client = genai.Client()
response = client.models.generate_content(
model='models/gemini-3-flash-preview',
contents=types.Content(
parts=[
types.Part(
inline_data=types.Blob(
data=video_bytes,
mime_type='video/mp4'),
video_metadata=types.VideoMetadata(fps=5)
),
types.Part(text='Please summarize the video in 3 sentences.')
]
)
)
デフォルトでは、動画から 1 フレーム/秒(FPS)がサンプリングされます。長い動画の場合は、FPS を低く(1 未満)設定することをおすすめします。この機能は、ほとんど静止している動画(講義など)に特に役立ちます。高速アクションの理解や高速モーション トラッキングなど、詳細な時間分析が必要な動画には、高い FPS を使用します。
サポートされている動画形式
Gemini は、次の動画形式の MIME タイプをサポートしています。
video/mp4video/mpegvideo/movvideo/avivideo/x-flvvideo/mpgvideo/webmvideo/wmvvideo/3gpp
動画に関する技術的な詳細
- サポートされているモデルとコンテキスト: すべての Gemini で動画データを処理できます。
- 100 万個のコンテキスト ウィンドウを持つモデルは、デフォルトのメディア解像度で最大 1 時間、低メディア解像度で最大 3 時間の動画を処理できます。
- ファイル API の処理: ファイル API を使用する場合、動画は 1 フレーム/秒(FPS)で保存され、音声は 1 Kbps(シングル チャンネル)で処理されます。タイムスタンプは 1 秒ごとに追加されます。
- これらのレートは、推論の改善のために今後変更される可能性があります。
- 1 FPS のサンプリング レートは、カスタム フレームレートを設定することでオーバーライドできます。
- トークンの計算: 動画の各秒は次のようにトークン化されます。
- 個々のフレーム(1 FPS でサンプリング):
mediaResolutionが低に設定されている場合、フレームはフレームあたり 66 個のトークンでトークン化されます。- それ以外の場合、フレームはフレームあたり 258 個のトークンでトークン化されます。
- 音声: 1 秒あたり 32 トークン。
- メタデータも含まれます。
- 合計: デフォルトのメディア解像度では動画 1 秒あたり約 300 トークン、低メディア解像度では動画 1 秒あたり 100 トークン。
- 個々のフレーム(1 FPS でサンプリング):
メディアの解像度: Gemini 3 では、
media_resolutionパラメータを使用して、マルチモーダル ビジョン処理をきめ細かく制御できます。media_resolutionパラメータは、入力画像または動画フレームごとに割り当てられるトークンの最大数を決定します。解像度が高いほど、モデルが細かいテキストを読み取ったり、小さな詳細を識別する能力が向上しますが、トークンの使用量とレイテンシが増加します。パラメータとそのトークン計算への影響について詳しくは、メディアの解像度ガイドをご覧ください。
タイムスタンプの形式: プロンプト内で動画の特定の時点を参照する場合は、
MM:SS形式(例:01:15(1 分 15 秒間)。ベスト プラクティス:
- 最適な結果を得るには、プロンプト リクエストごとに 1 つの動画のみを使用します。
- テキストと 1 つの動画を組み合わせる場合は、
contents配列の動画部分の後にテキスト プロンプトを配置します。 - 1 FPS のサンプリング レートでは、高速なアクション シーケンスの詳細が失われる可能性があります。必要に応じて、そのようなクリップの速度を遅くすることを検討してください。
次のステップ
このガイドでは、動画ファイルをアップロードし、動画入力からテキスト出力を生成する方法について説明します。詳細については、次のリソースをご覧ください。
- システム指示: システム指示を使用すると、特定のニーズやユースケースに基づいてモデルの動作を制御できます。
- Files API: Gemini で使用するファイルのアップロードと管理について説明します。
- ファイル プロンプト戦略: Gemini API は、テキスト、画像、音声、動画データを使用したプロンプト(マルチモーダル プロンプトとも呼ばれます)をサポートしています。
- 安全に関するガイダンス: 生成 AI モデルは、不正確、偏見的、不快な出力など、予期しない出力を生成することがあります。このような出力による危害のリスクを制限するには、後処理と人間による評価が不可欠です。