งานโปรแกรมรู้จำท่าทางสัมผัส MediaPipe ช่วยให้คุณจำท่าทางสัมผัสของมือได้แบบเรียลไทม์ และ ให้ผลลัพธ์การใช้มือที่จดจำได้ และจุดสังเกตของมือ มือที่ตรวจพบ วิธีการเหล่านี้จะแสดงวิธีใช้การรู้จำท่าทางสัมผัส สำหรับเว็บและแอป JavaScript
คุณสามารถดูการทำงานนี้โดยดูที่ การสาธิต สำหรับข้อมูลเพิ่มเติมเกี่ยวกับความสามารถ โมเดล และตัวเลือกการกำหนดค่า ของงานนี้ โปรดดูภาพรวม
ตัวอย่างโค้ด
โค้ดตัวอย่างสำหรับการจดจำท่าทางสัมผัสเป็นการใช้งานที่สมบูรณ์ ใน JavaScript เพื่อเป็นข้อมูลอ้างอิง โค้ดนี้จะช่วยคุณทดสอบงานนี้และรับ เริ่มจากการสร้างแอป การจดจำท่าทางสัมผัสขึ้นมาเอง คุณสามารถดู เรียกใช้ และ แก้ไขโค้ดตัวอย่างโปรแกรมจดจำท่าทางสัมผัส โดยใช้แค่เว็บเบราว์เซอร์
ตั้งค่า
ส่วนนี้จะอธิบายขั้นตอนสำคัญในการตั้งค่าสภาพแวดล้อมในการพัฒนาซอฟต์แวร์ เพื่อใช้การจดจำท่าทางสัมผัสโดยเฉพาะ สำหรับข้อมูลทั่วไปเกี่ยวกับ การตั้งค่าสภาพแวดล้อมในการพัฒนาซอฟต์แวร์เว็บและ JavaScript รวมถึง โปรดดูข้อกำหนดเวอร์ชันของแพลตฟอร์ม คู่มือการตั้งค่าสำหรับเว็บ
แพ็กเกจ JavaScript
รหัสโปรแกรมจดจำท่าทางสัมผัสมีให้บริการผ่าน MediaPipe @mediapipe/tasks-vision
แพ็กเกจ NPM คุณสามารถ
ให้ค้นหาและดาวน์โหลดไลบรารีเหล่านี้โดยทำตามวิธีการในแพลตฟอร์ม
คู่มือการตั้งค่า
คุณสามารถติดตั้งแพ็กเกจที่จำเป็นผ่าน NPM โดยใช้คำสั่งต่อไปนี้
npm install @mediapipe/tasks-vision
หากต้องการนำเข้ารหัสงานผ่านเครือข่ายนำส่งข้อมูล (CDN)
ให้เพิ่มโค้ดต่อไปนี้ลงในแท็ก <head>
ในไฟล์ HTML
<!-- You can replace JSDeliver with another CDN if you prefer to -->
<head>
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision/vision_bundle.js"
crossorigin="anonymous"></script>
</head>
รุ่น
งานการรู้จำท่าทางสัมผัส MediaPipe ต้องใช้โมเดลที่ผ่านการฝึกซึ่งสามารถทำงานร่วมกับ งาน สำหรับข้อมูลเพิ่มเติมเกี่ยวกับโมเดลที่ผ่านการฝึกที่พร้อมใช้งานสำหรับการจดจำท่าทางสัมผัส โปรดดูที่ ภาพรวมงานส่วนโมเดล
เลือกและดาวน์โหลดโมเดล จากนั้นเก็บโมเดลไว้ในไดเรกทอรีโปรเจ็กต์ของคุณ:
<dev-project-root>/app/shared/models/
สร้างงาน
ใช้ฟังก์ชันโปรแกรมรู้จำท่าทางสัมผัส createFrom...()
อย่างใดอย่างหนึ่งเพื่อ
เตรียมงานสำหรับการเรียกใช้การอนุมาน ใช้ createFromModelPath()
ที่มีเส้นทางแบบสัมพัทธ์หรือสัมบูรณ์ไปยังไฟล์โมเดลที่ฝึก
หากโมเดลโหลดลงในหน่วยความจำแล้ว คุณสามารถใช้
createFromModelBuffer()
วิธี
ตัวอย่างโค้ดด้านล่างสาธิตการใช้ฟังก์ชัน createFromOptions()
เพื่อ
ตั้งค่างาน ฟังก์ชัน createFromOptions
จะช่วยให้คุณสามารถกำหนดค่า
โปรแกรมจดจำท่าทางสัมผัสพร้อมตัวเลือกการกำหนดค่า ดูข้อมูลเพิ่มเติมเกี่ยวกับการกำหนดค่า
โปรดดูตัวเลือกที่หัวข้อตัวเลือกการกำหนดค่า
โค้ดต่อไปนี้แสดงวิธีสร้างและกำหนดค่างานด้วย ตัวเลือก:
// Create task for image file processing:
const vision = await FilesetResolver.forVisionTasks(
// path/to/wasm/root
"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm "
);
const gestureRecognizer = await GestureRecognizer.createFromOptions(vision, {
baseOptions: {
modelAssetPath: "https://storage.googleapis.com/mediapipe-tasks/gesture_recognizer/gesture_recognizer.task"
},
numHands: 2
});
ตัวเลือกการกำหนดค่า
งานนี้มีตัวเลือกการกำหนดค่าต่อไปนี้สำหรับเว็บแอปพลิเคชัน
ชื่อตัวเลือก | คำอธิบาย | ช่วงค่า | ค่าเริ่มต้น |
---|---|---|---|
runningMode |
ตั้งค่าโหมดการทำงานสำหรับงาน มี 2 แบบ
โหมด: รูปภาพ: โหมดสำหรับอินพุตรูปภาพเดียว วิดีโอ: โหมดสำหรับเฟรมที่ถอดรหัสของ วิดีโอหรือสตรีมแบบสดของข้อมูลอินพุต เช่น จากกล้อง |
{IMAGE, VIDEO } |
IMAGE |
num_hands |
จำนวนมือสูงสุดที่ตรวจจับได้ด้วย
GestureRecognizer
|
Any integer > 0 |
1 |
min_hand_detection_confidence |
คะแนนความเชื่อมั่นขั้นต่ำสำหรับการตรวจจับมือ โมเดลการตรวจจับฝ่ามือประสบความสำเร็จ | 0.0 - 1.0 |
0.5 |
min_hand_presence_confidence |
คะแนนความเชื่อมั่นขั้นต่ำสำหรับคะแนนการตรวจหาบุคคลในมือ โมเดลการตรวจจับจุดสังเกต ในโหมดวิดีโอและโหมดสตรีมแบบสดของโปรแกรมจดจำท่าทางสัมผัส หากคะแนนความเชื่อมั่นขณะแสดงด้วยมือจากรูปของมือ โมเดลจุดสังเกต อยู่ด้านล่าง เกณฑ์นี้จะทริกเกอร์โมเดลการตรวจจับฝ่ามือ มิเช่นนั้น อัลกอริทึมการติดตามมือน้ำหนักเบาใช้เพื่อระบุตำแหน่ง สำหรับการตรวจหาจุดสังเกตในภายหลัง | 0.0 - 1.0 |
0.5 |
min_tracking_confidence |
คะแนนความเชื่อมั่นขั้นต่ำสำหรับการติดตามมือที่จะพิจารณา สำเร็จ นี่คือเกณฑ์ IoU ของกรอบล้อมรอบระหว่างมือใน เฟรมปัจจุบันกับเฟรมสุดท้าย ในโหมดวิดีโอและโหมดสตรีมของ โปรแกรมจดจำท่าทางสัมผัส หากการติดตามล้มเหลว โปรแกรมจดจำท่าทางสัมผัสจะเรียกใช้มือ การตรวจจับ ไม่เช่นนั้นระบบจะข้ามการตรวจจับมือ | 0.0 - 1.0 |
0.5 |
canned_gestures_classifier_options |
ตัวเลือกสำหรับการกำหนดค่าลักษณะการทำงานของตัวแยกประเภทด้วยท่าทางสัมผัสสำเร็จรูป ท่าทางสัมผัสสำเร็จรูปคือ ["None", "Closed_Fist", "Open_Palm", "Pointing_Up", "Thumb_Down", "Thumb_Up", "Victory", "ILoveYou"] |
|
|
custom_gestures_classifier_options |
ตัวเลือกสำหรับการกำหนดค่าลักษณะการทำงานของตัวแยกประเภทด้วยท่าทางสัมผัสที่กำหนดเอง |
|
|
เตรียมข้อมูล
โปรแกรมจดจำท่าทางสัมผัสสามารถจดจำท่าทางสัมผัสในรูปภาพในรูปแบบใดก็ได้ที่ระบบรองรับ เบราว์เซอร์โฮสต์ งานนี้ยังจัดการการประมวลผลอินพุตข้อมูลล่วงหน้าด้วย ซึ่งรวมถึง การปรับขนาด การหมุนเวียน และการปรับค่าให้เป็นมาตรฐาน หากต้องการจดจำท่าทางสัมผัสในวิดีโอ คุณต้องทำดังนี้ สามารถใช้ API เพื่อประมวลผลทีละเฟรมอย่างรวดเร็ว โดยใช้การประทับเวลาของ เพื่อกำหนดเวลาที่มีท่าทางสัมผัสภายในวิดีโอ
เรียกใช้งาน
โปรแกรมจดจำท่าทางสัมผัสใช้ recognize()
(ในโหมดการวิ่ง 'image'
) และ
recognizeForVideo()
(โดยมีโหมดทำงาน 'video'
) เมธอดเพื่อทริกเกอร์
การอนุมาน งานจะประมวลผลข้อมูล พยายามจดจำมือ
จากนั้นจะรายงานผลลัพธ์
โค้ดต่อไปนี้แสดงวิธีดำเนินการประมวลผลด้วยโมเดลงาน
รูปภาพ
const image = document.getElementById("image") as HTMLImageElement; const gestureRecognitionResult = gestureRecognizer.recognize(image);
วิดีโอ
await gestureRecognizer.setOptions({ runningMode: "video" }); let lastVideoTime = -1; function renderLoop(): void { const video = document.getElementById("video"); if (video.currentTime !== lastVideoTime) { const gestureRecognitionResult = gestureRecognizer.recognizeForVideo(video); processResult(gestureRecognitionResult); lastVideoTime = video.currentTime; } requestAnimationFrame(() => { renderLoop(); }); }
การเรียกเมธอดโปรแกรมจดจำท่าทางสัมผัส recognize()
และ recognizeForVideo()
จะทำงาน
พร้อมกันและบล็อกชุดข้อความของอินเทอร์เฟซผู้ใช้ หากคุณจำท่าทางสัมผัสได้ใน
กล้องของอุปกรณ์ การจดจำแต่ละครั้งจะบล็อก
ชุดข้อความ คุณสามารถป้องกันปัญหานี้ได้โดยให้ผู้ปฏิบัติงานบนเว็บเรียกใช้
recognize()
และ recognizeForVideo()
เมธอดในชุดข้อความอื่น
สำหรับการใช้งานการรู้จำท่าทางสัมผัสที่สมบูรณ์ยิ่งขึ้น โปรดดูที่ ตัวอย่างโค้ด
จัดการและแสดงผลลัพธ์
ตัวจดจำท่าทางสัมผัสจะสร้างออบเจ็กต์ผลลัพธ์การตรวจจับท่าทางสัมผัสสำหรับแต่ละ การจดจำเสียง ออบเจ็กต์ผลลัพธ์มีจุดสังเกตของมือในพิกัดรูปภาพ จุดสังเกตในพิกัดโลก มือ(ซ้าย/ขวา) และมือ หมวดหมู่ท่าทางสัมผัสของมือที่ตรวจพบ
ตัวอย่างต่อไปนี้แสดงตัวอย่างข้อมูลเอาต์พุตจากงานนี้
GestureRecognizerResult
ที่ได้จะมีคอมโพเนนต์ 4 รายการ และคอมโพเนนต์แต่ละรายการเป็นอาร์เรย์ โดยที่แต่ละองค์ประกอบจะให้ผลลัพธ์ที่ตรวจพบจากมือเดียวที่ตรวจพบ
ความถนัดของมือ
ความถนัดของมือแสดงให้เห็นว่ามือที่ตรวจพบเป็นมือซ้ายหรือมือขวา
ท่าทางสัมผัส
หมวดหมู่ท่าทางสัมผัสที่รู้จักของมือที่ตรวจพบ
จุดสังเกต
มีจุดสังเกต 21 จุด แต่ละรายการประกอบด้วยพิกัด
x
,y
และz
พิกัดx
และy
จะได้รับการปรับให้เป็น [0.0, 1.0] ตามความกว้างของภาพและ ตามลำดับ พิกัดz
แสดงความลึกของจุดสังเกต โดยมี ความลึกที่ข้อมือซึ่งเป็นจุดเริ่มต้น ยิ่งค่าน้อยเท่าไหร่ ก็ยิ่งใกล้ ที่สำคัญคือกล้อง ขนาดของz
ใช้มาตราส่วนใกล้เคียงกับx
สถานที่สำคัญของโลก
นอกจากนี้ สัญลักษณ์มือ 21 ข้างยังแสดงเป็นพิกัดของโลกด้วย จุดสังเกตแต่ละแห่ง ประกอบด้วย
x
,y
และz
ซึ่งจะแสดงพิกัด 3 มิติตามจริงใน เมตรที่มีจุดกำเนิดอยู่ที่จุดศูนย์กลางเรขาคณิตของมือ
GestureRecognizerResult:
Handedness:
Categories #0:
index : 0
score : 0.98396
categoryName : Left
Gestures:
Categories #0:
score : 0.76893
categoryName : Thumb_Up
Landmarks:
Landmark #0:
x : 0.638852
y : 0.671197
z : -3.41E-7
Landmark #1:
x : 0.634599
y : 0.536441
z : -0.06984
... (21 landmarks for a hand)
WorldLandmarks:
Landmark #0:
x : 0.067485
y : 0.031084
z : 0.055223
Landmark #1:
x : 0.063209
y : -0.00382
z : 0.020920
... (21 world landmarks for a hand)
รูปภาพต่อไปนี้แสดงการแสดงภาพเอาต์พุตของงาน
สำหรับการใช้งานการสร้างงานการจดจำท่าทางสัมผัสที่สมบูรณ์ยิ่งขึ้น โปรดดูที่ ตัวอย่างโค้ด