คำแนะนำในการแยกประเภทรูปภาพสำหรับ Android

งานตัวแยกประเภทรูปภาพ MediaPipe ให้คุณแยกประเภทรูปภาพได้ คุณใช้งานนี้เพื่อระบุว่ารูปภาพแสดงถึงอะไรในชุดหมวดหมู่ที่กำหนดไว้ในเวลาฝึกได้ คำแนะนำเหล่านี้จะแสดงวิธีใช้ตัวแยกประเภทรูปภาพ กับแอป Android ตัวอย่างโค้ดที่อธิบายไว้ในวิธีการเหล่านี้สามารถดูได้ ในวันที่ GitHub

คุณสามารถดูการใช้งานจริงของงานนี้ได้โดยดูการสาธิตเว็บ สำหรับข้อมูลเพิ่มเติมเกี่ยวกับความสามารถ โมเดล และตัวเลือกการกำหนดค่า ของงานนี้ โปรดดูภาพรวม

ตัวอย่างโค้ด

โค้ดตัวอย่างงาน MediaPipe คือการใช้งานตัวแยกประเภทรูปภาพแบบง่ายๆ แอปสำหรับ Android ตัวอย่างนี้ใช้กล้องบนอุปกรณ์ Android จริงเพื่อ แยกประเภทออบเจ็กต์อย่างต่อเนื่อง และใช้รูปภาพและวิดีโอจาก เพื่อจำแนกออบเจ็กต์แบบคงที่

คุณสามารถใช้แอปนี้เป็นจุดเริ่มต้นสำหรับแอป Android ของคุณเอง หรืออ้างอิงถึงแอปนั้น เมื่อแก้ไขแอปที่มีอยู่ โค้ดตัวอย่างตัวแยกประเภทรูปภาพโฮสต์อยู่บน GitHub

ดาวน์โหลดโค้ด

วิธีการต่อไปนี้แสดงวิธีสร้างสำเนาตัวอย่างในเครื่อง โดยใช้เครื่องมือบรรทัดคำสั่ง git

วิธีดาวน์โหลดโค้ดตัวอย่าง

  1. โคลนที่เก็บ Git โดยใช้คำสั่งต่อไปนี้
    git clone https://github.com/google-ai-edge/mediapipe-samples
    
  2. คุณสามารถกำหนดค่าอินสแตนซ์ Git ให้ใช้การชำระเงินแบบกระจัดกระจายได้ เพื่อให้คุณมีเพียงไฟล์สำหรับแอปตัวอย่างตัวแยกประเภทรูปภาพเท่านั้น
    cd mediapipe
    git sparse-checkout init --cone
    git sparse-checkout set examples/image_classification/android
    

หลังจากสร้างโค้ดตัวอย่างในเวอร์ชันในเครื่องแล้ว คุณจะนำเข้าโปรเจ็กต์ได้ ลงใน Android Studio และเรียกใช้แอป ดูวิธีการได้ที่ คู่มือการการตั้งค่าสำหรับ Android

องค์ประกอบสำคัญ

ไฟล์ต่อไปนี้มีโค้ดที่สำคัญสำหรับภาพนี้ แอปพลิเคชันตัวอย่างการจัดประเภท:

  • ImageClassifierHelper.kt - เริ่มต้นตัวแยกประเภทรูปภาพ รวมถึงจัดการโมเดลและมอบสิทธิ์ มากมาย
  • MainActivity.kt - นำแอปพลิเคชันไปใช้งาน รวมถึงการเรียกใช้ ImageClassificationHelper และ ClassificationResultsAdapter
  • ClassificationResultsAdapter.kt - แฮนเดิลและจัดรูปแบบผลลัพธ์

ตั้งค่า

ส่วนนี้จะอธิบายขั้นตอนสำคัญในการตั้งค่าสภาพแวดล้อมในการพัฒนาซอฟต์แวร์ และ เพื่อใช้ตัวแยกประเภทรูปภาพ สำหรับข้อมูลทั่วไปเกี่ยวกับ การตั้งค่าสภาพแวดล้อมในการพัฒนาซอฟต์แวร์ของคุณสำหรับการใช้งาน MediaPipe ซึ่งรวมถึง โปรดดูข้อกำหนดเวอร์ชันของแพลตฟอร์ม คู่มือการตั้งค่าสำหรับ Android

การอ้างอิง

ตัวแยกประเภทรูปภาพใช้ไลบรารี com.google.mediapipe:tasks-vision เพิ่มรายการนี้ จะขึ้นอยู่กับไฟล์ build.gradle ของไฟล์ โปรเจ็กต์การพัฒนาแอป Android นำเข้าทรัพยากร Dependency ที่จำเป็นด้วย โค้ดต่อไปนี้

dependencies {
    ...
    implementation 'com.google.mediapipe:tasks-vision:latest.release'
}

รุ่น

งานตัวแยกประเภทรูปภาพ MediaPipe ต้องใช้โมเดลที่ผ่านการฝึกและรองรับ งาน ดูข้อมูลเพิ่มเติมเกี่ยวกับโมเดลที่ผ่านการฝึกที่ใช้ได้สำหรับตัวแยกประเภทรูปภาพได้ที่ ภาพรวมงานส่วนโมเดล

เลือกและดาวน์โหลดโมเดล จากนั้นเก็บโมเดลไว้ในไดเรกทอรีโปรเจ็กต์ของคุณ:

<dev-project-root>/src/main/assets

ใช้เมธอด BaseOptions.Builder.setModelAssetPath() เพื่อระบุเส้นทาง ที่โมเดลใช้อยู่ มีการอ้างอิงเมธอดนี้ในตัวอย่างโค้ดถัดไป

ใน โค้ดตัวอย่างตัวแยกประเภทรูปภาพ มีการกำหนดโมเดลในImageClassifierHelper.kt

สร้างงาน

คุณใช้ฟังก์ชัน createFromOptions เพื่อสร้างงานได้ ฟังก์ชัน createFromOptions ยอมรับตัวเลือกการกำหนดค่ารวมถึงการเรียกใช้ โหมด ภาษาของชื่อที่แสดง จำนวนผลลัพธ์สูงสุด เกณฑ์ความเชื่อมั่น และรายการที่อนุญาตหรือรายการปฏิเสธหมวดหมู่ ดูข้อมูลเพิ่มเติมเกี่ยวกับการกำหนดค่า โปรดดูที่ภาพรวมการกำหนดค่า

งานตัวแยกประเภทรูปภาพรองรับอินพุต 3 ประเภท ได้แก่ ภาพนิ่ง ไฟล์วิดีโอ และสตรีมวิดีโอสด คุณต้องระบุโหมดการทำงานที่สอดคล้องกับ ประเภทข้อมูลอินพุตเมื่อสร้างงาน เลือกแท็บที่ตรงกับ ประเภทข้อมูลอินพุตเพื่อดูวิธีสร้างงานและเรียกใช้การอนุมาน

รูปภาพ

ImageClassifierOptions options =
  ImageClassifierOptions.builder()
    .setBaseOptions(
      BaseOptions.builder().setModelAssetPath("model.tflite").build())
    .setRunningMode(RunningMode.IMAGE)
    .setMaxResults(5)
    .build();
imageClassifier = ImageClassifier.createFromOptions(context, options);
    

วิดีโอ

ImageClassifierOptions options =
  ImageClassifierOptions.builder()
    .setBaseOptions(
      BaseOptions.builder().setModelAssetPath("model.tflite").build())
    .setRunningMode(RunningMode.VIDEO)
    .setMaxResults(5)
    .build();
imageClassifier = ImageClassifier.createFromOptions(context, options);
    

สตรีมแบบสด

ImageClassifierOptions options =
  ImageClassifierOptions.builder()
    .setBaseOptions(
      BaseOptions.builder().setModelAssetPath("model.tflite").build())
    .setRunningMode(RunningMode.LIVE_STREAM)
    .setMaxResults(5)
    .setResultListener((result, inputImage) -> {
         // Process the classification result here.
    })
    .setErrorListener((result, inputImage) -> {
         // Process the classification errors here.
    })
    .build()
imageClassifier = ImageClassifier.createFromOptions(context, options)
    

การใช้โค้ดตัวอย่างของตัวแยกประเภทรูปภาพช่วยให้ผู้ใช้สลับระหว่าง โหมดการประมวลผลข้อมูล วิธีนี้ทำให้โค้ดการสร้างงานซับซ้อนขึ้นและ อาจไม่เหมาะกับกรณีการใช้งานของคุณ คุณดูรหัสนี้ได้ใน ฟังก์ชัน setupImageClassifier() ของฟังก์ชัน ImageClassifierHelper.kt

ตัวเลือกการกำหนดค่า

งานนี้มีตัวเลือกการกำหนดค่าต่อไปนี้สำหรับแอป Android

ชื่อตัวเลือก คำอธิบาย ช่วงค่า ค่าเริ่มต้น
runningMode ตั้งค่าโหมดการทำงานสำหรับงาน มี 3 แบบ โหมด:

รูปภาพ: โหมดสำหรับอินพุตรูปภาพเดียว

วิดีโอ: โหมดสำหรับเฟรมที่ถอดรหัสของวิดีโอ

LIVE_STREAM: โหมดสำหรับสตรีมแบบสดของอินพุต เช่น ข้อมูลจากกล้อง ในโหมดนี้ resultsListener ต้องเป็น ถูกเรียกให้ตั้งค่า Listener เพื่อรับผลลัพธ์ แบบไม่พร้อมกัน
{IMAGE, VIDEO, LIVE_STREAM} IMAGE
displayNamesLocale ตั้งค่าภาษาของป้ายกำกับที่จะใช้กับชื่อที่แสดงซึ่งระบุไว้ใน ข้อมูลเมตาของโมเดลงาน (หากมี) ค่าเริ่มต้นคือ en สำหรับ ภาษาอังกฤษ คุณเพิ่มป้ายกำกับที่แปลแล้วลงในข้อมูลเมตาของโมเดลที่กำหนดเองได้ โดยใช้ TensorFlow Lite Metadata Writer API รหัสภาษา en
maxResults ตั้งค่าจำนวนผลลัพธ์การจัดประเภทที่มีคะแนนสูงสุด (ไม่บังคับ) เป็น ผลตอบแทน ถ้า < 0 ระบบจะแสดงผลลัพธ์ที่ใช้ได้ทั้งหมด จำนวนบวกใดก็ได้ -1
scoreThreshold ตั้งค่าเกณฑ์คะแนนการคาดการณ์ซึ่งจะลบล้างเกณฑ์ที่ระบุไว้ใน ข้อมูลเมตาของโมเดล (หากมี) ผลลัพธ์ที่ต่ำกว่าค่านี้ถูกปฏิเสธ ทศนิยมใดก็ได้ ไม่ได้ตั้งค่า
categoryAllowlist ตั้งค่ารายการชื่อหมวดหมู่ที่อนุญาตซึ่งไม่บังคับ หากไม่ว่างเปล่า ผลลัพธ์การจัดหมวดหมู่ที่มีชื่อหมวดหมู่ที่ไม่ได้อยู่ในชุดนี้จะ ถูกกรองออก ระบบจะไม่สนใจชื่อหมวดหมู่ที่ซ้ำกันหรือไม่รู้จัก ตัวเลือกนี้ไม่เกี่ยวข้องกับ categoryDenylist และใช้ ทั้งคู่จะทําให้เกิดข้อผิดพลาด สตริงใดก็ได้ ไม่ได้ตั้งค่า
categoryDenylist ตั้งค่ารายการตัวเลือกชื่อหมวดหมู่ที่ไม่ได้รับอนุญาต ถ้า ไม่ว่างเปล่า ระบบจะกรองผลลัพธ์การจัดประเภทที่มีชื่อหมวดหมู่ในชุดนี้ ระบบจะไม่สนใจชื่อหมวดหมู่ที่ซ้ำกันหรือไม่รู้จัก ตัวเลือกนี้มีผลร่วมกัน เฉพาะตัวสำหรับ categoryAllowlist และการใช้ทั้ง 2 อย่างจะทำให้เกิดข้อผิดพลาด สตริงใดก็ได้ ไม่ได้ตั้งค่า
resultListener ตั้งค่า Listener ผลลัพธ์เพื่อรับผลลัพธ์การจัดประเภท แบบไม่พร้อมกันเมื่อตัวแยกประเภทรูปภาพอยู่ในสตรีมแบบสด ใช้ได้เมื่อตั้งค่าโหมดวิ่งเป็น LIVE_STREAM เท่านั้น ไม่มี ไม่ได้ตั้งค่า
errorListener ตั้งค่า Listener ข้อผิดพลาดที่ไม่บังคับ ไม่มี ไม่ได้ตั้งค่า

เตรียมข้อมูล

ตัวแยกประเภทรูปภาพใช้งานได้กับรูปภาพ ไฟล์วิดีโอ และวิดีโอสตรีมแบบสด งาน จัดการการประมวลผลอินพุตข้อมูลล่วงหน้า ซึ่งรวมถึงการปรับขนาด การหมุน และค่า การแปลงเป็นรูปแบบมาตรฐาน

คุณต้องแปลงรูปภาพหรือเฟรมอินพุตเป็น com.google.mediapipe.framework.image.MPImage ก่อนที่จะส่งไปยัง ตัวแยกประเภทรูปภาพ

รูปภาพ

import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.MPImage;

// Load an image on the users device as a Bitmap object using BitmapFactory.

// Convert an Androids Bitmap object to a MediaPipes Image object.
Image mpImage = new BitmapImageBuilder(bitmap).build();
    

วิดีโอ

import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.MPImage;

// Load a video file on the user's device using MediaMetadataRetriever

// From the videos metadata, load the METADATA_KEY_DURATION and
// METADATA_KEY_VIDEO_FRAME_COUNT value. Youll need them
// to calculate the timestamp of each frame later.

// Loop through the video and load each frame as a Bitmap object.

// Convert the Androids Bitmap object to a MediaPipes Image object.
Image mpImage = new BitmapImageBuilder(frame).build();
    

สตรีมแบบสด

import com.google.mediapipe.framework.image.MediaImageBuilder;
import com.google.mediapipe.framework.image.MPImage;

// Create a CameraXs ImageAnalysis to continuously receive frames 
// from the devices camera. Configure it to output frames in RGBA_8888
// format to match with what is required by the model.

// For each Androids ImageProxy object received from the ImageAnalysis, 
// extract the encapsulated Androids Image object and convert it to 
// a MediaPipes Image object.
android.media.Image mediaImage = imageProxy.getImage()
Image mpImage = new MediaImageBuilder(mediaImage).build();
    

ใน โค้ดตัวอย่างตัวแยกประเภทรูปภาพ การเตรียมข้อมูลได้รับการจัดการใน ImageClassifierHelper.kt

เรียกใช้งาน

คุณสามารถเรียกใช้ฟังก์ชัน classify ที่สอดคล้องกับโหมดการวิ่งเพื่อทริกเกอร์การอนุมานได้ Image Classifier API จะแสดงผลหมวดหมู่ที่เป็นไปได้สำหรับวัตถุภายในรูปภาพหรือเฟรมอินพุต

รูปภาพ

ImageClassifierResult classifierResult = imageClassifier.classify(image);
    

วิดีโอ

// Calculate the timestamp in milliseconds of the current frame.
long frame_timestamp_ms = 1000 * video_duration * frame_index / frame_count;

// Run inference on the frame.
ImageClassifierResult classifierResult =
    imageClassifier.classifyForVideo(image, frameTimestampMs);
    

สตรีมแบบสด

// Run inference on the frame. The classifications results will be available 
// via the `resultListener` provided in the `ImageClassifierOptions` when 
// the image classifier was created.
imageClassifier.classifyAsync(image, frameTimestampMs);
    

โปรดทราบดังต่อไปนี้

  • เมื่อทำงานในโหมดวิดีโอหรือโหมดสตรีมแบบสด คุณต้อง ระบุการประทับเวลาของเฟรมอินพุตในงานตัวแยกประเภทรูปภาพ
  • เมื่อเรียกใช้ในโหมดรูปภาพหรือวิดีโอ งานตัวแยกประเภทรูปภาพ บล็อกชุดข้อความปัจจุบันจนกว่าจะประมวลผลรูปภาพอินพุตเสร็จสิ้น หรือ เฟรม หากต้องการหลีกเลี่ยงการบล็อกอินเทอร์เฟซผู้ใช้ ให้เรียกใช้การประมวลผลใน เทรดพื้นหลัง
  • เมื่อทำงานในโหมดสตรีมแบบสด งานตัวแยกประเภทรูปภาพจะไม่บล็อก ชุดข้อความปัจจุบันแต่จะแสดงอีกครั้งทันที ระบบจะเรียกใช้ผลลัพธ์ Listener พร้อมผลลัพธ์การตรวจจับทุกครั้งที่ประมวลผลเสร็จแล้ว เฟรมอินพุต หากมีการเรียกฟังก์ชัน classifyAsync เมื่อตัวแยกประเภทรูปภาพ งานไม่ว่างในการประมวลผลอีกเฟรมหนึ่ง งานจะไม่สนใจเฟรมอินพุตใหม่

ใน โค้ดตัวอย่างตัวแยกประเภทรูปภาพ ฟังก์ชัน classify ได้รับการกำหนดไว้ใน ImageClassifierHelper.kt

จัดการและแสดงผลลัพธ์

เมื่อใช้การอนุมาน งานตัวแยกประเภทรูปภาพจะแสดงผลออบเจ็กต์ ImageClassifierResult ซึ่งมีรายการหมวดหมู่ที่เป็นไปได้สำหรับวัตถุภายในรูปภาพหรือเฟรมอินพุต

ตัวอย่างต่อไปนี้แสดงตัวอย่างข้อมูลเอาต์พุตจากงานนี้

ImageClassifierResult:
 Classifications #0 (single classification head):
  head index: 0
  category #0:
   category name: "/m/01bwb9"
   display name: "Passer domesticus"
   score: 0.91406
   index: 671
  category #1:
   category name: "/m/01bwbt"
   display name: "Passer montanus"
   score: 0.00391
   index: 670

ผลลัพธ์นี้มาจากการเรียกใช้ Bird Classifier ใน:

ใน โค้ดตัวอย่างตัวแยกประเภทรูปภาพ คลาส ClassificationResultsAdapter ใน ClassificationResultsAdapter.kt จัดการกับผลลัพธ์ ดังนี้

fun updateResults(imageClassifierResult: ImageClassifierResult? = null) {
    categories = MutableList(adapterSize) { null }
    if (imageClassifierResult != null) {
        val sortedCategories = imageClassifierResult.classificationResult()
            .classifications()[0].categories().sortedBy { it.index() }
        val min = kotlin.math.min(sortedCategories.size, categories.size)
        for (i in 0 until min) {
            categories[i] = sortedCategories[i]
        }
    }
}