इमेज क्लासिफ़ायर टास्क की मदद से, इमेज को अलग-अलग कैटगरी में बांटा जा सकता है. इस टास्क का इस्तेमाल करके, यह पता लगाया जा सकता है कि ट्रेनिंग के समय तय की गई कैटगरी में से, कोई इमेज किस कैटगरी से जुड़ी है. ये निर्देश आपको iOS ऐप्लिकेशन में इमेज क्लासिफ़ायर के इस्तेमाल का तरीका बताते हैं. इन निर्देशों में बताया गया कोड सैंपल, GitHub पर उपलब्ध है.
इस टास्क को काम करते हुए देखने के लिए, यह वेब डेमो देखें. इस टास्क की सुविधाओं, मॉडल, और कॉन्फ़िगरेशन के विकल्पों के बारे में ज़्यादा जानने के लिए, खास जानकारी देखें.
कोड का उदाहरण
MediaPipe Tasks का उदाहरण कोड, iOS के लिए इमेज की कैटगरी तय करने वाले ऐप्लिकेशन को लागू करने का बुनियादी तरीका है. इस उदाहरण में, iOS डिवाइस के कैमरे का इस्तेमाल करके चीज़ों की लगातार कैटगरी तय की गई है. साथ ही, ऑब्जेक्ट की कैटगरी तय करने के लिए डिवाइस की गैलरी में मौजूद इमेज और वीडियो का इस्तेमाल किया गया है.
अपने iOS ऐप्लिकेशन के लिए, इस ऐप्लिकेशन का इस्तेमाल स्टार्टिंग पॉइंट के तौर पर किया जा सकता है. इसके अलावा, किसी मौजूदा ऐप्लिकेशन में बदलाव करते समय इसका इस्तेमाल किया जा सकता है. इमेज क्लासिफ़ायर के उदाहरण का कोड, GitHub पर होस्ट किया गया है.
कोड डाउनलोड करना
इन निर्देशों में, git कमांड लाइन टूल का इस्तेमाल करके, उदाहरण कोड की लोकल कॉपी बनाने का तरीका बताया गया है.
उदाहरण के तौर पर दिया गया कोड डाउनलोड करने के लिए:
यहां दिए गए कमांड का इस्तेमाल करके, Git डेटा स्टोर करने की जगह को क्लोन करें:
git clone https://github.com/google-ai-edge/mediapipe-samples
इसके अलावा, अपने git इंस्टेंस को स्पैर्स चेकआउट का इस्तेमाल करने के लिए कॉन्फ़िगर करें, ताकि आपके पास सिर्फ़ इमेज क्लासिफ़ायर के उदाहरण वाले ऐप्लिकेशन की फ़ाइलें हों:
cd mediapipe git sparse-checkout init --cone git sparse-checkout set examples/image_classification/ios/
उदाहरण के तौर पर दिए गए कोड का लोकल वर्शन बनाने के बाद, MediaPipe टास्क लाइब्रेरी इंस्टॉल की जा सकती है. इसके बाद, Xcode का इस्तेमाल करके प्रोजेक्ट खोलें और ऐप्लिकेशन चलाएं. निर्देशों के लिए, iOS के लिए सेटअप गाइड देखें.
मुख्य कॉम्पोनेंट
इन फ़ाइलों में, इमेज क्लासिफ़ायर के उदाहरण के ऐप्लिकेशन के लिए ज़रूरी कोड शामिल है:
- ImageClassifierService.swift: इमेज क्लासिफ़ायर शुरू करता है, मॉडल चुनने को हैंडल करता है, और इनपुट डेटा के आधार पर अनुमान चलाता है.
- CameraViewController.swift: लाइव कैमरा फ़ीड इनपुट मोड के लिए यूज़र इंटरफ़ेस (यूआई) लागू करता है और नतीजों को विज़ुअलाइज़ करता है.
- MediaLibraryViewController.swift स्टिल इमेज और वीडियो फ़ाइल के इनपुट मोड के लिए, यूज़र इंटरफ़ेस (यूआई) लागू करता है और नतीजों को विज़ुअलाइज़ करता है.
सेटअप
इस सेक्शन में, इमेज क्लासिफ़ायर का इस्तेमाल करने के लिए आपके डेवलपमेंट एनवायरमेंट और कोड प्रोजेक्ट को सेट अप करने के मुख्य चरणों के बारे में बताया गया है. MediaPipe Tasks का इस्तेमाल करने के लिए, डेवलपमेंट एनवायरमेंट सेट अप करने के बारे में सामान्य जानकारी पाने के लिए, iOS के लिए सेटअप गाइड देखें. इसमें, प्लैटफ़ॉर्म के वर्शन से जुड़ी ज़रूरी शर्तें भी शामिल हैं.
डिपेंडेंसी
इमेज क्लासिफ़ायर MediaPipeTasksVision
लाइब्रेरी का इस्तेमाल करता है, जिसे CocoaPods का इस्तेमाल करके इंस्टॉल किया जाना ज़रूरी है. यह लाइब्रेरी, Swift और Objective-C, दोनों तरह के ऐप्लिकेशन के साथ काम करती है. साथ ही, इसके लिए भाषा के हिसाब से किसी अतिरिक्त सेटअप की ज़रूरत नहीं होती.
macOS पर CocoaPods इंस्टॉल करने के निर्देशों के लिए, CocoaPods को इंस्टॉल करने की गाइड देखें.
अपने ऐप्लिकेशन के लिए ज़रूरी पॉड के साथ Podfile
बनाने का तरीका जानने के लिए, CocoaPods का इस्तेमाल करना देखें.
नीचे दिए गए कोड का इस्तेमाल करके, Podfile
में MediaPipeTasksVision पॉड जोड़ें:
target 'MyImageClassifierApp' do
use_frameworks!
pod 'MediaPipeTasksVision'
end
अगर आपके ऐप्लिकेशन में यूनिट टेस्ट टारगेट शामिल हैं, तो Podfile
को सेट अप करने के बारे में ज़्यादा जानकारी के लिए, iOS के लिए सेट अप करने की गाइड देखें.
मॉडल
MediaPipe इमेज क्लासिफ़ायर टास्क के लिए एक प्रशिक्षित मॉडल की ज़रूरत है, जो इस टास्क के साथ काम कर सके. इमेज क्लासिफ़ायर के लिए तैयार किए गए उपलब्ध मॉडल के बारे में ज़्यादा जानकारी के लिए, टास्क की खास जानकारी वाला मॉडल सेक्शन देखें.
कोई मॉडल चुनें और डाउनलोड करें. इसके बाद, Xcode का इस्तेमाल करके उसे अपनी प्रोजेक्ट डायरेक्ट्री में जोड़ें. Xcode प्रोजेक्ट में फ़ाइलें जोड़ने का तरीका जानने के लिए, अपने Xcode प्रोजेक्ट में फ़ाइलों और फ़ोल्डर को मैनेज करना लेख पढ़ें.
अपने ऐप्लिकेशन बंडल में मॉडल का पाथ बताने के लिए, BaseOptions.modelAssetPath
प्रॉपर्टी का इस्तेमाल करें. कोड के उदाहरण के लिए, अगला सेक्शन देखें.
टास्क बनाना
इमेज क्लासिफ़ायर टास्क बनाने के लिए, उसके किसी एक इनिशलाइज़र को कॉल करें. ImageClassifier(options:)
शुरू करने वाला टूल, कॉन्फ़िगरेशन के विकल्पों के लिए वैल्यू सेट करता है. इनमें रनिंग मोड, डिसप्ले नेम की स्थान-भाषा, नतीजों की ज़्यादा से ज़्यादा संख्या, कॉन्फ़िडेंस थ्रेशोल्ड, कैटगरी की अनुमति वाली सूची, और ब्लॉकलिस्ट शामिल हैं.
अगर आपको पसंद के मुताबिक कॉन्फ़िगरेशन के विकल्पों के साथ शुरू किए गए इमेज क्लासिफ़ायर की ज़रूरत नहीं है, तो डिफ़ॉल्ट विकल्पों के साथ इमेज क्लासिफ़ायर बनाने के लिए, ImageClassifier(modelPath:)
शुरू करने वाले टूल का इस्तेमाल किया जा सकता है. कॉन्फ़िगरेशन के विकल्पों के बारे में ज़्यादा जानने के लिए, कॉन्फ़िगरेशन की खास जानकारी देखें.
इमेज की कैटगरी तय करने वाले टास्क में तीन तरह के इनपुट डेटा टाइप इस्तेमाल किए जा सकते हैं: स्टिल इमेज, वीडियो फ़ाइलें, और लाइव वीडियो स्ट्रीम. डिफ़ॉल्ट रूप से, ImageClassifier(modelPath:)
स्टिल इमेज के लिए एक टास्क शुरू करता है. अगर आपको वीडियो फ़ाइलों या लाइव वीडियो स्ट्रीम को प्रोसेस करने के लिए टास्क शुरू करना है, तो वीडियो या लाइव स्ट्रीम मोड को चुनने के लिए ImageClassifier(options:)
का इस्तेमाल करें. लाइव स्ट्रीम मोड के लिए, imageClassifierLiveStreamDelegate
कॉन्फ़िगरेशन का एक और विकल्प भी ज़रूरी है. इससे इमेज क्लासिफ़ायर, इमेज की कैटगरी तय करने के नतीजे, डिलीगेट को अलग-अलग समय पर डिलीवर कर पाता है.
टास्क बनाने और अनुमान लगाने का तरीका जानने के लिए, अपने रनिंग मोड से जुड़ा टैब चुनें.
Swift
इमेज
import MediaPipeTasksVision let modelPath = Bundle.main.path(forResource: "model", ofType: "tflite") let options = ImageClassifierOptions() options.baseOptions.modelAssetPath = modelPath options.runningMode = .image options.maxResults = 5 let imageClassifier = try ImageClassifier(options: options)
वीडियो
import MediaPipeTasksVision let modelPath = Bundle.main.path(forResource: "model", ofType: "tflite") let options = ImageClassifierOptions() options.baseOptions.modelAssetPath = modelPath options.runningMode = .video options.maxResults = 5 let imageClassifier = try ImageClassifier(options: options)
लाइवस्ट्रीम
import MediaPipeTasksVision // Class that conforms to the `ImageClassifierLiveStreamDelegate` protocol and // implements the method that the image classifier calls once it // finishes performing classification on each input frame. class ImageClassifierResultProcessor: NSObject, ImageClassifierLiveStreamDelegate { func imageClassifier( _ imageClassifier: ImageClassifier, didFinishClassification result: ImageClassifierResult?, timestampInMilliseconds: Int, error: Error?) { // Process the image classifier result or errors here. } } let modelPath = Bundle.main.path( forResource: "model", ofType: "tflite") let options = ImageClassifierOptions() options.baseOptions.modelAssetPath = modelPath options.runningMode = .liveStream options.maxResults = 5 // Assign an object of the class to the `imageClassifierLiveStreamDelegate` // property. let processor = ImageClassifierResultProcessor() options.imageClassifierLiveStreamDelegate = processor let imageClassifier = try ImageClassifier(options: options)
Objective-C
इमेज
@import MediaPipeTasksVision; NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model" ofType:@"tflite"]; MPPImageClassifierOptions *options = [[MPPImageClassifierOptions alloc] init]; options.baseOptions.modelAssetPath = modelPath; options.runningMode = MPPRunningModeImage; options.maxResults = 5; MPPImageClassifier *imageClassifier = [[MPPImageClassifier alloc] initWithOptions:options error:nil];
वीडियो
@import MediaPipeTasksVision; NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model" ofType:@"tflite"]; MPPImageClassifierOptions *options = [[MPPImageClassifierOptions alloc] init]; options.baseOptions.modelAssetPath = modelPath; options.runningMode = MPPRunningModeVideo; options.maxResults = 5; MPPImageClassifier *imageClassifier = [[MPPImageClassifier alloc] initWithOptions:options error:nil];
लाइवस्ट्रीम
@import MediaPipeTasksVision; // Class that conforms to the `MPPImageClassifierLiveStreamDelegate` protocol // and implements the method that the image classifier calls once it finishes // performing classification on each input frame. @interface APPImageClassifierResultProcessor : NSObject@end @implementation APPImageClassifierResultProcessor - (void)imageClassifier:(MPPImageClassifier *)imageClassifier didFinishClassificationWithResult:(MPPImageClassifierResult *)imageClassifierResult timestampInMilliseconds:(NSInteger)timestampInMilliseconds error:(NSError *)error { // Process the image classifier result or errors here. } @end NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model" ofType:@"tflite"]; MPPImageClassifierOptions *options = [[MPPImageClassifierOptions alloc] init]; options.baseOptions.modelAssetPath = modelPath; options.runningMode = MPPRunningModeLiveStream; options.maxResults = 5; // Assign an object of the class to the `imageClassifierLiveStreamDelegate` // property. APPImageClassifierResultProcessor *processor = [APPImageClassifierResultProcessor new]; options.imageClassifierLiveStreamDelegate = processor; MPPImageClassifier *imageClassifier = [[MPPImageClassifier alloc] initWithOptions:options error:nil];
कॉन्फ़िगरेशन विकल्प
इस टास्क में iOS ऐप्लिकेशन के लिए, नीचे दिए गए कॉन्फ़िगरेशन के विकल्प मौजूद हैं:
विकल्प का नाम | ब्यौरा | वैल्यू की रेंज | डिफ़ॉल्ट मान |
---|---|---|---|
runningMode |
टास्क के लिए रनिंग मोड सेट करता है. इसके तीन मोड हैं: IMAGE: एक इमेज इनपुट के लिए मोड. वीडियो: वीडियो के डिकोड किए गए फ़्रेम के लिए मोड. LIVE_STREAM: कैमरे से मिले इनपुट डेटा की लाइव स्ट्रीम के लिए मोड. इस मोड में, नतीजे असींक्रोनस तरीके से पाने के लिए, एक listener सेट अप करने के लिए, resultListener को कॉल करना होगा. |
{RunningMode.image, RunningMode.video, RunningMode.liveStream } |
RunningMode.image |
displayNamesLocale |
टास्क के मॉडल के मेटाडेटा में दिए गए डिसप्ले नेम के लिए, लेबल की भाषा सेट करता है. हालांकि, ऐसा तब ही किया जाता है, जब वह भाषा उपलब्ध हो. अंग्रेज़ी के लिए, डिफ़ॉल्ट तौर पर en होता है. TensorFlow Lite Metadata Writer API का इस्तेमाल करके, कस्टम मॉडल के मेटाडेटा में स्थानीय भाषा के लेबल जोड़े जा सकते हैं |
स्थानीय भाषा का कोड | en |
maxResults |
सबसे ज़्यादा स्कोर वाले, कैटगरी के नतीजों की ज़्यादा से ज़्यादा संख्या सेट करता है. हालांकि, ऐसा करना ज़रूरी नहीं है. अगर यह वैल्यू 0 से कम है, तो सभी उपलब्ध नतीजे दिखाए जाएंगे. | कोई भी पॉज़िटिव संख्या | -1 |
scoreThreshold |
अनुमान के स्कोर का थ्रेशोल्ड सेट करता है. यह थ्रेशोल्ड, मॉडल के मेटाडेटा में दिए गए थ्रेशोल्ड (अगर कोई है) को बदल देता है. इस वैल्यू से कम के नतीजे अस्वीकार कर दिए जाते हैं. | कोई भी फ़्लोट | सेट नहीं है |
categoryAllowlist |
कैटगरी के लिए इस्तेमाल किए जा सकने वाले नामों की सूची सेट करता है. हालांकि, यह सूची सेट करना ज़रूरी नहीं है. अगर खाली नहीं है, तो
क्लासिफ़िकेशन के जिन नतीजों की कैटगरी का नाम इस सेट में नहीं है उन्हें फ़िल्टर कर दिया जाएगा. डुप्लीकेट या अज्ञात कैटगरी के नामों को अनदेखा कर दिया जाता है.
यह विकल्प, categoryDenylist के साथ इस्तेमाल नहीं किया जा सकता. दोनों का इस्तेमाल करने पर गड़बड़ी का मैसेज दिखता है. |
कोई भी स्ट्रिंग | सेट नहीं है |
categoryDenylist |
कैटगरी के उन नामों की वैकल्पिक सूची सेट करता है जिनका इस्तेमाल नहीं किया जा सकता. अगर यह सेट खाली नहीं है, तो कैटगरी के जिन नामों को इस सेट में शामिल किया गया है उनके लिए, कैटगरी के हिसाब से किए गए बंटवारे के नतीजे फ़िल्टर कर दिए जाएंगे. डुप्लीकेट या अज्ञात कैटगरी के नामों को अनदेखा कर दिया जाता है. यह विकल्प, categoryAllowlist के साथ इस्तेमाल नहीं किया जा सकता. दोनों का इस्तेमाल करने पर गड़बड़ी होती है. |
कोई भी स्ट्रिंग | सेट नहीं है |
resultListener |
जब इमेज क्लासिफ़ायर लाइव स्ट्रीम मोड में हो, तब कैटगरी के नतीजे असींक्रोनस तरीके से पाने के लिए, नतीजा सुनने वाला सेट करता है. इसका इस्तेमाल सिर्फ़ तब किया जा सकता है, जब रनिंग मोड को LIVE_STREAM पर सेट किया गया हो |
लागू नहीं | सेट नहीं है |
लाइव स्ट्रीम का कॉन्फ़िगरेशन
जब रनिंग मोड को लाइव स्ट्रीम पर सेट किया जाता है, तो इमेज क्लासिफ़ायर को imageClassifierLiveStreamDelegate
कॉन्फ़िगरेशन के अतिरिक्त विकल्प की ज़रूरत होती है. इससे क्लासिफ़ायर, अलग-अलग समय पर कैटगरी के नतीजे दिखा पाता है. डिलीगेट, imageClassifier(_:didFinishClassification:timestampInMilliseconds:error:)
तरीका लागू करता है. इमेज क्लासिफ़ायर, हर फ़्रेम के लिए कैटगरी तय करने के नतीजों को प्रोसेस करने के बाद, इस तरीके को कॉल करता है.
विकल्प का नाम | ब्यौरा | वैल्यू की रेंज | डिफ़ॉल्ट मान |
---|---|---|---|
imageClassifierLiveStreamDelegate |
लाइव स्ट्रीम मोड में, इमेज क्लासिफ़ायर को कैटगरी तय करने के नतीजे, एक साथ न मिलकर अलग-अलग समय पर पाने की सुविधा देता है. जिस क्लास का इंस्टेंस इस प्रॉपर्टी पर सेट है उसे
imageClassifier(_:didFinishClassification:timestampInMilliseconds:error:)
तरीका लागू करना होगा. |
लागू नहीं | सेट नहीं है |
डेटा तैयार करना
इनपुट इमेज या फ़्रेम को इमेज क्लासिफ़ायर में भेजने से पहले, आपको उसे MPImage
ऑब्जेक्ट में बदलना होगा. MPImage
, iOS के अलग-अलग तरह के इमेज फ़ॉर्मैट के साथ काम करता है. साथ ही, इनका इस्तेमाल अनुमान लगाने के लिए, किसी भी रनिंग मोड में किया जा सकता है. MPImage
के बारे में ज़्यादा जानकारी के लिए, MPImage API पर जाएं.
अपने इस्तेमाल के उदाहरण और ऐप्लिकेशन के लिए ज़रूरी रनिंग मोड के आधार पर, iOS इमेज फ़ॉर्मैट चुनें.MPImage
, UIImage
, CVPixelBuffer
, और
CMSampleBuffer
iOS इमेज फ़ॉर्मैट स्वीकार करता है.
UIImage
UIImage
फ़ॉर्मैट, इन रनिंग मोड के लिए सबसे सही है:
इमेज: ऐप्लिकेशन बंडल, उपयोगकर्ता की गैलरी या फ़ाइल सिस्टम में मौजूद इमेज को
MPImage
ऑब्जेक्ट में बदला जा सकता है. हालांकि, इसके लिए ज़रूरी है कि इमेज कोUIImage
फ़ॉर्मैट में फ़ॉर्मैट किया गया हो.वीडियो: वीडियो फ़्रेम को CGImage फ़ॉर्मैट में निकालने के लिए, AVAssetImageGenerator का इस्तेमाल करें. इसके बाद, उन्हें
UIImage
इमेज में बदलें.
Swift
// Load an image on the user's device as an iOS `UIImage` object. // Convert the `UIImage` object to a MediaPipe's Image object having the default // orientation `UIImage.Orientation.up`. let image = try MPImage(uiImage: image)
Objective-C
// Load an image on the user's device as an iOS `UIImage` object. // Convert the `UIImage` object to a MediaPipe's Image object having the default // orientation `UIImageOrientationUp`. MPImage *image = [[MPPImage alloc] initWithUIImage:image error:nil];
इस उदाहरण में, डिफ़ॉल्ट UIImage.Orientation.Up ओरिएंटेशन के साथ MPImage
को शुरू किया गया है. MPImage
को, इस्तेमाल की जा सकने वाली किसी भी UIImage.Orientation
वैल्यू के साथ शुरू किया जा सकता है. इमेज क्लासिफ़ायर, .upMirrored
, .downMirrored
, .leftMirrored
, .rightMirrored
जैसे मिरर किए गए ओरिएंटेशन के साथ काम नहीं करता.
UIImage
के बारे में ज़्यादा जानकारी के लिए, UIImage Apple Developer के दस्तावेज़ देखें.
CVPixelBuffer
CVPixelBuffer
फ़ॉर्मैट, उन ऐप्लिकेशन के लिए सबसे सही है जो फ़्रेम जनरेट करते हैं और प्रोसेसिंग के लिए iOS CoreImage फ़्रेमवर्क का इस्तेमाल करते हैं.
CVPixelBuffer
फ़ॉर्मैट, इन रनिंग मोड के लिए सबसे सही है:
इमेज: iOS के
CoreImage
फ़्रेमवर्क का इस्तेमाल करके, कुछ प्रोसेसिंग के बादCVPixelBuffer
इमेज जनरेट करने वाले ऐप्लिकेशन को इमेज रनिंग मोड में, इमेज क्लासिफ़ायर को भेजा जा सकता है.वीडियो: वीडियो फ़्रेम को प्रोसेस करने के लिए,
CVPixelBuffer
फ़ॉर्मैट में बदला जा सकता है. इसके बाद, इन्हें वीडियो मोड में इमेज क्लासिफ़ायर को भेजा जा सकता है.लाइव स्ट्रीम: फ़्रेम जनरेट करने के लिए iOS कैमरे का इस्तेमाल करने वाले ऐप्लिकेशन, प्रोसेसिंग के लिए
CVPixelBuffer
फ़ॉर्मैट में बदले जा सकते हैं. इसके बाद, इन्हें लाइव स्ट्रीम मोड में इमेज क्लासिफ़ायर को भेजा जा सकता है.
Swift
// Obtain a CVPixelBuffer. // Convert the `CVPixelBuffer` object to a MediaPipe's Image object having the default // orientation `UIImage.Orientation.up`. let image = try MPImage(pixelBuffer: pixelBuffer)
Objective-C
// Obtain a CVPixelBuffer. // Convert the `CVPixelBuffer` object to a MediaPipe's Image object having the // default orientation `UIImageOrientationUp`. MPImage *image = [[MPPImage alloc] initWithUIImage:image error:nil];
CVPixelBuffer
के बारे में ज़्यादा जानकारी के लिए, CVPixelBuffer Apple Developer दस्तावेज़ देखें.
CMSampleBuffer
CMSampleBuffer
फ़ॉर्मैट, एक जैसे मीडिया टाइप के मीडिया सैंपल को सेव करता है. साथ ही, यह लाइव स्ट्रीम के रनिंग मोड के लिए सबसे सही है. iOS कैमरों से मिले लाइव फ़्रेम, iOS AVCaptureVideoDataOutput की मदद से, CMSampleBuffer
फ़ॉर्मैट में अलग-अलग डिलीवर किए जाते हैं.
Swift
// Obtain a CMSampleBuffer. // Convert the `CMSampleBuffer` object to a MediaPipe's Image object having the default // orientation `UIImage.Orientation.up`. let image = try MPImage(sampleBuffer: sampleBuffer)
Objective-C
// Obtain a `CMSampleBuffer`. // Convert the `CMSampleBuffer` object to a MediaPipe's Image object having the // default orientation `UIImageOrientationUp`. MPImage *image = [[MPPImage alloc] initWithSampleBuffer:sampleBuffer error:nil];
CMSampleBuffer
के बारे में ज़्यादा जानकारी के लिए, CMSampleBuffer Apple
के डेवलपर दस्तावेज़ देखें.
टास्क को पूरा करें
इमेज क्लासिफ़ायर को चलाने के लिए, असाइन किए गए classify()
तरीके का इस्तेमाल करें, जो चलाने के मोड पर निर्भर करता है:
- स्टिल इमेज:
classify(image:)
- वीडियो:
classify(videoFrame:timestampInMilliseconds:)
- लाइव स्ट्रीम:
classifyAsync(image:timestampInMilliseconds:)
इमेज क्लासिफ़ायर, इनपुट इमेज या फ़्रेम में मौजूद ऑब्जेक्ट के लिए संभावित कैटगरी दिखाता है.
यहां दिए गए कोड सैंपल में, इमेज क्लासिफ़ायर को इन अलग-अलग मोड में चलाने के बुनियादी उदाहरण दिए गए हैं:
Swift
इमेज
let result = try imageClassifier.classify(image: image)
वीडियो
let result = try imageClassifier.classify( videoFrame: image, timestampInMilliseconds: timestamp)
लाइवस्ट्रीम
try imageClassifier.classifyAsync( image: image, timestampInMilliseconds: timestamp)
Objective-C
इमेज
MPPImageClassifierResult *result = [imageClassifier classifyImage:image error:nil];
वीडियो
MPPImageClassifierResult *result = [imageClassifier classifyVideoFrame:image timestampInMilliseconds:timestamp error:nil];
लाइवस्ट्रीम
BOOL success = [imageClassifier classifyAsyncImage:image timestampInMilliseconds:timestamp error:nil];
इमेज क्लासिफ़ायर कोड के उदाहरण में, इनमें से हर मोड को लागू करने के बारे में ज़्यादा जानकारी दी गई है: classify(image:)
,
classify(videoFrame:timestampInMilliseconds:)
, और
classifyAsync(image:timestampInMilliseconds:)
. उदाहरण के तौर पर दिए गए कोड की मदद से, उपयोगकर्ता प्रोसेसिंग मोड के बीच स्विच कर सकता है. हालांकि, ऐसा आपके इस्तेमाल के उदाहरण के लिए ज़रूरी नहीं है.
निम्न पर ध्यान दें:
वीडियो मोड या लाइव स्ट्रीम मोड में चलाने पर, आपको इमेज क्लासिफ़ायर टास्क में इनपुट फ़्रेम का टाइमस्टैंप भी देना होगा.
इमेज या वीडियो मोड में चलने पर, इमेज क्लासिफ़ायर टास्क, मौजूदा थ्रेड को तब तक ब्लॉक करता है, जब तक वह इनपुट इमेज या फ़्रेम को प्रोसेस नहीं कर लेता. मौजूदा थ्रेड को ब्लॉक होने से बचाने के लिए, iOS के Dispatch या NSOperation फ़्रेमवर्क का इस्तेमाल करके, बैकग्राउंड थ्रेड में प्रोसेसिंग को पूरा करें.
लाइव स्ट्रीम मोड में चलाने पर, इमेज की कैटगरी तय करने वाला टास्क तुरंत वापस आ जाता है. यह मौजूदा थ्रेड को ब्लॉक नहीं करता. यह हर इनपुट फ़्रेम को प्रोसेस करने के बाद,
imageClassifier(_:didFinishClassification:timestampInMilliseconds:error:)
के तरीके को कैटगरी के नतीजे के साथ लागू करता है. इमेज क्लासिफ़ायर, खास सीरियल डिस्पैच सूची पर इस तरीके को एसिंक्रोनस रूप से शुरू करता है. यूज़र इंटरफ़ेस पर नतीजे दिखाने के लिए, नतीजों को प्रोसेस करने के बाद, उन्हें मुख्य सूची में भेजें. अगर इमेज क्लासिफ़ायर टास्क किसी दूसरे फ़्रेम को प्रोसेस कर रहा है, तोclassifyAsync
फ़ंक्शन को कॉल करने पर, इमेज क्लासिफ़ायर नए इनपुट फ़्रेम को अनदेखा कर देता है.
नतीजों को मैनेज और दिखाना
अनुमान लगाने के बाद, इमेज क्लासिफ़ायर टास्क एक ImageClassifierResult
ऑब्जेक्ट दिखाता है. इसमें इनपुट इमेज या फ़्रेम में मौजूद ऑब्जेक्ट के लिए, संभावित कैटगरी की सूची होती है.
यहां इस टास्क के आउटपुट डेटा का उदाहरण दिया गया है:
ImageClassifierResult:
Classifications #0 (single classification head):
head index: 0
category #0:
category name: "/m/01bwb9"
display name: "Passer domesticus"
score: 0.91406
index: 671
category #1:
category name: "/m/01bwbt"
display name: "Passer montanus"
score: 0.00391
index: 670
यह नतीजा, इन पर पक्षी की पहचान करने वाले टूल को चलाकर मिला है:
इमेज क्लासिफ़ायर के उदाहरण वाले कोड में, टास्क से मिले कैटगरी के नतीजे दिखाने का तरीका बताया गया है. ज़्यादा जानकारी के लिए, कोड का उदाहरण देखें.