คำแนะนำในการแยกประเภทรูปภาพสำหรับเว็บ

งานตัวแยกประเภทรูปภาพ MediaPipe ให้คุณแยกประเภทรูปภาพได้ คุณสามารถใช้ งานนี้เพื่อระบุว่ารูปภาพแสดงถึงอะไรในชุดหมวดหมู่ที่กำหนดไว้ ในเวลาฝึกอบรม คำแนะนำเหล่านี้จะแสดงวิธีใช้ตัวแยกประเภทรูปภาพ สำหรับโหนดและเว็บแอป

คุณสามารถดูการทำงานนี้โดยดูที่ การสาธิต สำหรับข้อมูลเพิ่มเติมเกี่ยวกับความสามารถ โมเดล และตัวเลือกการกำหนดค่า ของงานนี้ โปรดดูภาพรวม

ตัวอย่างโค้ด

โค้ดตัวอย่างสำหรับตัวแยกประเภทรูปภาพแสดงการติดตั้งโค้ดนี้อย่างสมบูรณ์ ใน JavaScript เพื่อเป็นข้อมูลอ้างอิง โค้ดนี้จะช่วยคุณทดสอบงานนี้และ เริ่มต้นสร้างแอปการจำแนกประเภทรูปภาพของคุณเอง คุณสามารถดู เรียกใช้ และ แก้ไข ตัวแยกประเภทรูปภาพ โค้ดตัวอย่าง โดยใช้แค่เว็บเบราว์เซอร์

ตั้งค่า

ส่วนนี้จะอธิบายขั้นตอนสำคัญในการตั้งค่าสภาพแวดล้อมในการพัฒนาซอฟต์แวร์ และ เพื่อใช้ตัวแยกประเภทรูปภาพโดยเฉพาะ สำหรับข้อมูลทั่วไปเกี่ยวกับ การตั้งค่าสภาพแวดล้อมในการพัฒนาซอฟต์แวร์ของคุณสำหรับการใช้งาน MediaPipe ซึ่งรวมถึง โปรดดูข้อกำหนดเวอร์ชันของแพลตฟอร์ม คู่มือการตั้งค่าสำหรับเว็บ

แพ็กเกจ JavaScript

รหัสตัวแยกประเภทรูปภาพพร้อมให้ใช้งานผ่าน MediaPipe @mediapipe/tasks-vision แพ็กเกจ NPM คุณสามารถ ค้นหาและดาวน์โหลดไลบรารีเหล่านี้จากลิงก์ที่ให้ไว้ในแพลตฟอร์ม คู่มือการตั้งค่า

คุณติดตั้งแพ็กเกจที่จำเป็นได้ด้วยรหัสต่อไปนี้สำหรับการทดลองใช้ในเครื่อง โดยใช้คำสั่งต่อไปนี้

npm install @mediapipe/tasks-vision

หากต้องการนำเข้ารหัสงานผ่านเครือข่ายนำส่งข้อมูล (CDN) ให้เพิ่มโค้ดต่อไปนี้ลงในแท็กในไฟล์ HTML ของคุณ

<!-- You can replace JSDeliver with another CDN if you prefer to -->
<head>
  <script src="https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision/vision_bundle.js"
    crossorigin="anonymous"></script>
</head>

รุ่น

งานตัวแยกประเภทรูปภาพ MediaPipe ต้องใช้โมเดลที่ผ่านการฝึกและรองรับ งาน ดูข้อมูลเพิ่มเติมเกี่ยวกับโมเดลที่ผ่านการฝึกที่ใช้ได้สำหรับตัวแยกประเภทรูปภาพได้ที่ ภาพรวมงานส่วนโมเดล

เลือกและดาวน์โหลดโมเดล แล้วเก็บไว้ในไดเรกทอรีโปรเจ็กต์ของคุณ:

<dev-project-root>/app/shared/models/

สร้างงาน

ใช้ฟังก์ชัน createFrom...() ของตัวแยกประเภทรูปภาพเพื่อ เตรียมงานสำหรับการเรียกใช้การอนุมาน ใช้ createFromModelPath() ที่มีเส้นทางแบบสัมพัทธ์หรือสัมบูรณ์ไปยังไฟล์โมเดลที่ฝึก หากโมเดลโหลดลงในหน่วยความจำแล้ว คุณสามารถใช้ createFromModelBuffer() วิธี

ตัวอย่างโค้ดด้านล่างสาธิตการใช้ฟังก์ชัน createFromOptions() เพื่อ ตั้งค่างาน ฟังก์ชัน createFromOptions จะช่วยให้คุณสามารถกำหนดค่า ตัวแยกประเภทรูปภาพที่มีตัวเลือกการกำหนดค่า ดูข้อมูลเพิ่มเติมเกี่ยวกับการกำหนดค่า โปรดดูตัวเลือกที่หัวข้อตัวเลือกการกำหนดค่า

โค้ดต่อไปนี้แสดงวิธีสร้างและกำหนดค่างานด้วย ตัวเลือก:

async function createImageClassifier {
  const vision = await FilesetResolver.forVisionTasks(
    "https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@0.10.0/wasm"
  );
  imageClassifier = await ImageClassifier.createFromOptions(vision, {
    baseOptions: {
      modelAssetPath: `https://storage.googleapis.com/mediapipe-models/image_classifier/efficientnet_lite0/float32/1/efficientnet_lite0.tflite`
    },
  });
}

ตัวเลือกการกำหนดค่า

งานนี้มีตัวเลือกการกำหนดค่าต่อไปนี้สำหรับเว็บแอปพลิเคชัน

ชื่อตัวเลือก คำอธิบาย ช่วงค่า ค่าเริ่มต้น
runningMode ตั้งค่าโหมดการทำงานสำหรับงาน มี 2 แบบ โหมด:

รูปภาพ: โหมดสำหรับอินพุตรูปภาพเดียว

วิดีโอ: โหมดสำหรับเฟรมที่ถอดรหัสของ วิดีโอหรือสตรีมแบบสดของข้อมูลอินพุต เช่น จากกล้อง
{IMAGE, VIDEO} IMAGE
displayNamesLocale ตั้งค่าภาษาของป้ายกำกับที่จะใช้กับชื่อที่แสดงซึ่งระบุไว้ใน ข้อมูลเมตาของโมเดลงาน (หากมี) ค่าเริ่มต้นคือ en สำหรับ ภาษาอังกฤษ คุณเพิ่มป้ายกำกับที่แปลแล้วลงในข้อมูลเมตาของโมเดลที่กำหนดเองได้ โดยใช้ TensorFlow Lite Metadata Writer API รหัสภาษา en
maxResults ตั้งค่าจำนวนผลลัพธ์การจัดประเภทที่มีคะแนนสูงสุด (ไม่บังคับ) เป็น ผลตอบแทน ถ้า < 0 ระบบจะแสดงผลลัพธ์ที่ใช้ได้ทั้งหมด จำนวนบวกใดก็ได้ -1
scoreThreshold ตั้งค่าเกณฑ์คะแนนการคาดการณ์ซึ่งจะลบล้างเกณฑ์ที่ระบุไว้ใน ข้อมูลเมตาของโมเดล (หากมี) ผลลัพธ์ที่ต่ำกว่าค่านี้ถูกปฏิเสธ ทศนิยมใดก็ได้ ไม่ได้ตั้งค่า
categoryAllowlist ตั้งค่ารายการชื่อหมวดหมู่ที่อนุญาตซึ่งไม่บังคับ หากไม่ว่างเปล่า ผลลัพธ์การจัดหมวดหมู่ที่มีชื่อหมวดหมู่ที่ไม่ได้อยู่ในชุดนี้จะ ถูกกรองออก ระบบจะไม่สนใจชื่อหมวดหมู่ที่ซ้ำกันหรือไม่รู้จัก ตัวเลือกนี้ไม่เกี่ยวข้องกับ categoryDenylist และใช้ ทั้งคู่จะทําให้เกิดข้อผิดพลาด สตริงใดก็ได้ ไม่ได้ตั้งค่า
categoryDenylist ตั้งค่ารายการตัวเลือกชื่อหมวดหมู่ที่ไม่ได้รับอนุญาต ถ้า ไม่ว่างเปล่า ระบบจะกรองผลลัพธ์การจัดประเภทที่มีชื่อหมวดหมู่ในชุดนี้ ระบบจะไม่สนใจชื่อหมวดหมู่ที่ซ้ำกันหรือไม่รู้จัก ตัวเลือกนี้มีผลร่วมกัน เฉพาะตัวสำหรับ categoryAllowlist และการใช้ทั้ง 2 อย่างจะทำให้เกิดข้อผิดพลาด สตริงใดก็ได้ ไม่ได้ตั้งค่า
resultListener ตั้งค่า Listener ผลลัพธ์เพื่อรับผลลัพธ์การจัดประเภท แบบไม่พร้อมกันเมื่อตัวแยกประเภทรูปภาพอยู่ในสตรีมแบบสด ใช้ได้เมื่อตั้งค่าโหมดวิ่งเป็น LIVE_STREAM เท่านั้น ไม่มี ไม่ได้ตั้งค่า

เตรียมข้อมูล

ตัวแยกประเภทรูปภาพสามารถจัดหมวดหมู่ออบเจ็กต์ในรูปภาพในรูปแบบใดก็ได้ที่ระบบรองรับ เบราว์เซอร์โฮสต์ งานนี้ยังจัดการการประมวลผลอินพุตข้อมูลล่วงหน้าด้วย ซึ่งรวมถึง การปรับขนาด การหมุนเวียน และการปรับค่าให้เป็นมาตรฐาน

การเรียกใช้ตัวแยกประเภทรูปภาพ classify() และ classifyForVideo() จะเรียกใช้เมธอด พร้อมกันและบล็อกชุดข้อความของอินเทอร์เฟซผู้ใช้ หากคุณจัดประเภทออบเจ็กต์ใน เฟรมวิดีโอจากกล้องของอุปกรณ์ การแยกประเภทแต่ละประเภทจะบล็อก ชุดข้อความ คุณสามารถป้องกันปัญหานี้ได้โดยให้ผู้ปฏิบัติงานทำงานบนเว็บทำงาน classify() และ classifyForVideo() ในชุดข้อความอื่น

เรียกใช้งาน

ตัวแยกประเภทรูปภาพใช้เมธอด classify() กับโหมดรูปภาพและ เมธอด classifyForVideo() ที่มีโหมด video เพื่อทริกเกอร์ การอนุมาน Image Classifier API จะแสดงหมวดหมู่ที่เป็นไปได้ สำหรับวัตถุภายในรูปภาพอินพุต

โค้ดต่อไปนี้แสดงวิธีดำเนินการประมวลผลด้วยโมเดลงาน

รูปภาพ

const image = document.getElementById("image") as HTMLImageElement;
const imageClassifierResult = imageClassifier.classify(image);

วิดีโอ

const video = document.getElementById("video");
await imageClassifier.setOptions({ runningMode: "VIDEO" });

const timestamp = performance.now();
const classificationResult = await imageClassifier.classifyForVideo(
    video,
    timestamp
  );

สำหรับการปรับใช้การเรียกใช้ตัวแยกประเภทรูปภาพที่สมบูรณ์ยิ่งขึ้น โปรดดูที่ ตัวอย่างโค้ด)

จัดการและแสดงผลลัพธ์

เมื่อใช้การอนุมาน งานตัวแยกประเภทรูปภาพจะแสดงผล ออบเจ็กต์ ImageClassifierResult รายการที่มีรายการหมวดหมู่ที่เป็นไปได้ สำหรับวัตถุภายในรูปภาพหรือเฟรมอินพุต

ตัวอย่างต่อไปนี้แสดงตัวอย่างข้อมูลเอาต์พุตจากงานนี้

ImageClassifierResult:
 Classifications #0 (single classification head):
  head index: 0
  category #0:
   category name: "/m/01bwb9"
   display name: "Passer domesticus"
   score: 0.91406
   index: 671
  category #1:
   category name: "/m/01bwbt"
   display name: "Passer montanus"
   score: 0.00391
   index: 670

ผลลัพธ์นี้มาจากการเรียกใช้ Bird Classifier ใน:

โค้ดตัวอย่างของตัวแยกประเภทรูปภาพแสดงวิธีแสดงการจัดประเภท ผลลัพธ์ที่ส่งคืนจากงาน โปรดดู ตัวอย่างโค้ด เพื่อดูรายละเอียด