Model Gemini dapat memproses dokumen dalam format PDF, menggunakan visi bawaan untuk memahami seluruh konteks dokumen. Hal ini melampaui ekstraksi teks sederhana, sehingga Gemini dapat:
- Menganalisis dan menginterpretasikan konten, termasuk teks, gambar, diagram, grafik, dan tabel, bahkan dalam dokumen panjang hingga 1.000 halaman.
- Mengekstrak informasi ke dalam format output terstruktur.
- Meringkas dan menjawab pertanyaan berdasarkan elemen visual dan tekstual dalam dokumen.
- Mentranskripsikan konten dokumen (misalnya, ke HTML), dengan mempertahankan tata letak dan pemformatan, untuk digunakan dalam aplikasi hilir.
Meneruskan data PDF inline
Anda dapat meneruskan data PDF inline dalam permintaan ke generateContent
.
Untuk payload PDF di bawah 20 MB, Anda dapat memilih antara mengupload dokumen yang dienkode base64 atau mengupload file yang disimpan secara lokal secara langsung.
Contoh berikut menunjukkan cara mengambil PDF dari URL dan mengonversinya menjadi byte untuk diproses:
Python
from google import genai
from google.genai import types
import httpx
client = genai.Client()
doc_url = "https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf"
# Retrieve and encode the PDF byte
doc_data = httpx.get(doc_url).content
prompt = "Summarize this document"
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[
types.Part.from_bytes(
data=doc_data,
mime_type='application/pdf',
),
prompt])
print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const pdfResp = await fetch('https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf')
.then((response) => response.arrayBuffer());
const contents = [
{ text: "Summarize this document" },
{
inlineData: {
mimeType: 'application/pdf',
data: Buffer.from(pdfResp).toString("base64")
}
}
];
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: contents
});
console.log(response.text);
}
main();
Go
package main
import (
"context"
"fmt"
"io"
"net/http"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
pdfResp, _ := http.Get("https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf")
var pdfBytes []byte
if pdfResp != nil && pdfResp.Body != nil {
pdfBytes, _ = io.ReadAll(pdfResp.Body)
pdfResp.Body.Close()
}
parts := []*genai.Part{
&genai.Part{
InlineData: &genai.Blob{
MIMEType: "application/pdf",
Data: pdfBytes,
},
},
genai.NewPartFromText("Summarize this document"),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
}
REST
DOC_URL="https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf"
PROMPT="Summarize this document"
DISPLAY_NAME="base64_pdf"
# Download the PDF
wget -O "${DISPLAY_NAME}.pdf" "${DOC_URL}"
# Check for FreeBSD base64 and set flags accordingly
if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
B64FLAGS="--input"
else
B64FLAGS="-w0"
fi
# Base64 encode the PDF
ENCODED_PDF=$(base64 $B64FLAGS "${DISPLAY_NAME}.pdf")
# Generate content using the base64 encoded PDF
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"inline_data": {"mime_type": "application/pdf", "data": "'"$ENCODED_PDF"'"}},
{"text": "'$PROMPT'"}
]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
# Clean up the downloaded PDF
rm "${DISPLAY_NAME}.pdf"
Anda juga dapat membaca PDF dari file lokal untuk diproses:
Python
from google import genai
from google.genai import types
import pathlib
client = genai.Client()
# Retrieve and encode the PDF byte
filepath = pathlib.Path('file.pdf')
prompt = "Summarize this document"
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[
types.Part.from_bytes(
data=filepath.read_bytes(),
mime_type='application/pdf',
),
prompt])
print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai";
import * as fs from 'fs';
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const contents = [
{ text: "Summarize this document" },
{
inlineData: {
mimeType: 'application/pdf',
data: Buffer.from(fs.readFileSync("content/343019_3_art_0_py4t4l_convrt.pdf")).toString("base64")
}
}
];
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: contents
});
console.log(response.text);
}
main();
Go
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
pdfBytes, _ := os.ReadFile("path/to/your/file.pdf")
parts := []*genai.Part{
&genai.Part{
InlineData: &genai.Blob{
MIMEType: "application/pdf",
Data: pdfBytes,
},
},
genai.NewPartFromText("Summarize this document"),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
}
Mengupload PDF menggunakan File API
Anda dapat menggunakan File API untuk mengupload dokumen yang lebih besar. Selalu gunakan File API jika ukuran total permintaan (termasuk file, perintah teks, petunjuk sistem, dll.) lebih besar dari 20 MB.
Panggil media.upload
untuk mengupload file menggunakan
File API. Kode berikut mengupload file dokumen, lalu menggunakan file tersebut dalam panggilan ke
models.generateContent
.
PDF besar dari URL
Gunakan File API untuk menyederhanakan upload dan pemrosesan file PDF besar dari URL:
Python
from google import genai
from google.genai import types
import io
import httpx
client = genai.Client()
long_context_pdf_path = "https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf"
# Retrieve and upload the PDF using the File API
doc_io = io.BytesIO(httpx.get(long_context_pdf_path).content)
sample_doc = client.files.upload(
# You can pass a path or a file-like object here
file=doc_io,
config=dict(
mime_type='application/pdf')
)
prompt = "Summarize this document"
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[sample_doc, prompt])
print(response.text)
JavaScript
import { createPartFromUri, GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const pdfBuffer = await fetch("https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf")
.then((response) => response.arrayBuffer());
const fileBlob = new Blob([pdfBuffer], { type: 'application/pdf' });
const file = await ai.files.upload({
file: fileBlob,
config: {
displayName: 'A17_FlightPlan.pdf',
},
});
// Wait for the file to be processed.
let getFile = await ai.files.get({ name: file.name });
while (getFile.state === 'PROCESSING') {
getFile = await ai.files.get({ name: file.name });
console.log(`current file status: ${getFile.state}`);
console.log('File is still processing, retrying in 5 seconds');
await new Promise((resolve) => {
setTimeout(resolve, 5000);
});
}
if (file.state === 'FAILED') {
throw new Error('File processing failed.');
}
// Add the file to the contents.
const content = [
'Summarize this document',
];
if (file.uri && file.mimeType) {
const fileContent = createPartFromUri(file.uri, file.mimeType);
content.push(fileContent);
}
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: content,
});
console.log(response.text);
}
main();
Go
package main
import (
"context"
"fmt"
"io"
"net/http"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
pdfURL := "https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf"
localPdfPath := "A17_FlightPlan_downloaded.pdf"
respHttp, _ := http.Get(pdfURL)
defer respHttp.Body.Close()
outFile, _ := os.Create(localPdfPath)
defer outFile.Close()
_, _ = io.Copy(outFile, respHttp.Body)
uploadConfig := &genai.UploadFileConfig{MIMEType: "application/pdf"}
uploadedFile, _ := client.Files.UploadFromPath(ctx, localPdfPath, uploadConfig)
promptParts := []*genai.Part{
genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType),
genai.NewPartFromText("Summarize this document"),
}
contents := []*genai.Content{
genai.NewContentFromParts(promptParts, genai.RoleUser), // Specify role
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
}
REST
PDF_PATH="https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf"
DISPLAY_NAME="A17_FlightPlan"
PROMPT="Summarize this document"
# Download the PDF from the provided URL
wget -O "${DISPLAY_NAME}.pdf" "${PDF_PATH}"
MIME_TYPE=$(file -b --mime-type "${DISPLAY_NAME}.pdf")
NUM_BYTES=$(wc -c < "${DISPLAY_NAME}.pdf")
echo "MIME_TYPE: ${MIME_TYPE}"
echo "NUM_BYTES: ${NUM_BYTES}"
tmp_header_file=upload-header.tmp
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${DISPLAY_NAME}.pdf" 2> /dev/null > file_info.json
file_uri=$(jq ".file.uri" file_info.json)
echo "file_uri: ${file_uri}"
# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "'$PROMPT'"},
{"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
# Clean up the downloaded PDF
rm "${DISPLAY_NAME}.pdf"
PDF besar yang disimpan secara lokal
Python
from google import genai
from google.genai import types
import pathlib
import httpx
client = genai.Client()
# Retrieve and encode the PDF byte
file_path = pathlib.Path('large_file.pdf')
# Upload the PDF using the File API
sample_file = client.files.upload(
file=file_path,
)
prompt="Summarize this document"
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[sample_file, "Summarize this document"])
print(response.text)
JavaScript
import { createPartFromUri, GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const file = await ai.files.upload({
file: 'path-to-localfile.pdf'
config: {
displayName: 'A17_FlightPlan.pdf',
},
});
// Wait for the file to be processed.
let getFile = await ai.files.get({ name: file.name });
while (getFile.state === 'PROCESSING') {
getFile = await ai.files.get({ name: file.name });
console.log(`current file status: ${getFile.state}`);
console.log('File is still processing, retrying in 5 seconds');
await new Promise((resolve) => {
setTimeout(resolve, 5000);
});
}
if (file.state === 'FAILED') {
throw new Error('File processing failed.');
}
// Add the file to the contents.
const content = [
'Summarize this document',
];
if (file.uri && file.mimeType) {
const fileContent = createPartFromUri(file.uri, file.mimeType);
content.push(fileContent);
}
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: content,
});
console.log(response.text);
}
main();
Go
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
localPdfPath := "/path/to/file.pdf"
uploadConfig := &genai.UploadFileConfig{MIMEType: "application/pdf"}
uploadedFile, _ := client.Files.UploadFromPath(ctx, localPdfPath, uploadConfig)
promptParts := []*genai.Part{
genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType),
genai.NewPartFromText("Give me a summary of this pdf file."),
}
contents := []*genai.Content{
genai.NewContentFromParts(promptParts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
}
REST
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT
tmp_header_file=upload-header.tmp
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: application/pdf" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json
file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri
# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "Can you add a few more lines to this poem?"},
{"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
Anda dapat memverifikasi bahwa API berhasil menyimpan file yang diupload dan mendapatkan
metadatanya dengan memanggil files.get
. Hanya name
(dan dengan demikian, uri
) yang unik.
Python
from google import genai
import pathlib
client = genai.Client()
fpath = pathlib.Path('example.txt')
fpath.write_text('hello')
file = client.files.upload(file='example.txt')
file_info = client.files.get(name=file.name)
print(file_info.model_dump_json(indent=4))
REST
name=$(jq ".file.name" file_info.json)
# Get the file of interest to check state
curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
# Print some information about the file you got
name=$(jq ".file.name" file_info.json)
echo name=$name
file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri
Meneruskan beberapa PDF
Gemini API dapat memproses beberapa dokumen PDF (hingga 1.000 halaman) dalam satu permintaan, selama ukuran gabungan dokumen dan perintah teks tetap berada dalam jendela konteks model.
Python
from google import genai
import io
import httpx
client = genai.Client()
doc_url_1 = "https://arxiv.org/pdf/2312.11805"
doc_url_2 = "https://arxiv.org/pdf/2403.05530"
# Retrieve and upload both PDFs using the File API
doc_data_1 = io.BytesIO(httpx.get(doc_url_1).content)
doc_data_2 = io.BytesIO(httpx.get(doc_url_2).content)
sample_pdf_1 = client.files.upload(
file=doc_data_1,
config=dict(mime_type='application/pdf')
)
sample_pdf_2 = client.files.upload(
file=doc_data_2,
config=dict(mime_type='application/pdf')
)
prompt = "What is the difference between each of the main benchmarks between these two papers? Output these in a table."
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[sample_pdf_1, sample_pdf_2, prompt])
print(response.text)
JavaScript
import { createPartFromUri, GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function uploadRemotePDF(url, displayName) {
const pdfBuffer = await fetch(url)
.then((response) => response.arrayBuffer());
const fileBlob = new Blob([pdfBuffer], { type: 'application/pdf' });
const file = await ai.files.upload({
file: fileBlob,
config: {
displayName: displayName,
},
});
// Wait for the file to be processed.
let getFile = await ai.files.get({ name: file.name });
while (getFile.state === 'PROCESSING') {
getFile = await ai.files.get({ name: file.name });
console.log(`current file status: ${getFile.state}`);
console.log('File is still processing, retrying in 5 seconds');
await new Promise((resolve) => {
setTimeout(resolve, 5000);
});
}
if (file.state === 'FAILED') {
throw new Error('File processing failed.');
}
return file;
}
async function main() {
const content = [
'What is the difference between each of the main benchmarks between these two papers? Output these in a table.',
];
let file1 = await uploadRemotePDF("https://arxiv.org/pdf/2312.11805", "PDF 1")
if (file1.uri && file1.mimeType) {
const fileContent = createPartFromUri(file1.uri, file1.mimeType);
content.push(fileContent);
}
let file2 = await uploadRemotePDF("https://arxiv.org/pdf/2403.05530", "PDF 2")
if (file2.uri && file2.mimeType) {
const fileContent = createPartFromUri(file2.uri, file2.mimeType);
content.push(fileContent);
}
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: content,
});
console.log(response.text);
}
main();
Go
package main
import (
"context"
"fmt"
"io"
"net/http"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
docUrl1 := "https://arxiv.org/pdf/2312.11805"
docUrl2 := "https://arxiv.org/pdf/2403.05530"
localPath1 := "doc1_downloaded.pdf"
localPath2 := "doc2_downloaded.pdf"
respHttp1, _ := http.Get(docUrl1)
defer respHttp1.Body.Close()
outFile1, _ := os.Create(localPath1)
_, _ = io.Copy(outFile1, respHttp1.Body)
outFile1.Close()
respHttp2, _ := http.Get(docUrl2)
defer respHttp2.Body.Close()
outFile2, _ := os.Create(localPath2)
_, _ = io.Copy(outFile2, respHttp2.Body)
outFile2.Close()
uploadConfig1 := &genai.UploadFileConfig{MIMEType: "application/pdf"}
uploadedFile1, _ := client.Files.UploadFromPath(ctx, localPath1, uploadConfig1)
uploadConfig2 := &genai.UploadFileConfig{MIMEType: "application/pdf"}
uploadedFile2, _ := client.Files.UploadFromPath(ctx, localPath2, uploadConfig2)
promptParts := []*genai.Part{
genai.NewPartFromURI(uploadedFile1.URI, uploadedFile1.MIMEType),
genai.NewPartFromURI(uploadedFile2.URI, uploadedFile2.MIMEType),
genai.NewPartFromText("What is the difference between each of the " +
"main benchmarks between these two papers? " +
"Output these in a table."),
}
contents := []*genai.Content{
genai.NewContentFromParts(promptParts, genai.RoleUser),
}
modelName := "gemini-2.5-flash"
result, _ := client.Models.GenerateContent(
ctx,
modelName,
contents,
nil,
)
fmt.Println(result.Text())
}
REST
DOC_URL_1="https://arxiv.org/pdf/2312.11805"
DOC_URL_2="https://arxiv.org/pdf/2403.05530"
DISPLAY_NAME_1="Gemini_paper"
DISPLAY_NAME_2="Gemini_1.5_paper"
PROMPT="What is the difference between each of the main benchmarks between these two papers? Output these in a table."
# Function to download and upload a PDF
upload_pdf() {
local doc_url="$1"
local display_name="$2"
# Download the PDF
wget -O "${display_name}.pdf" "${doc_url}"
local MIME_TYPE=$(file -b --mime-type "${display_name}.pdf")
local NUM_BYTES=$(wc -c < "${display_name}.pdf")
echo "MIME_TYPE: ${MIME_TYPE}"
echo "NUM_BYTES: ${NUM_BYTES}"
local tmp_header_file=upload-header.tmp
# Initial resumable request
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D "${tmp_header_file}" \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${display_name}'}}" 2> /dev/null
local upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the PDF
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${display_name}.pdf" 2> /dev/null > "file_info_${display_name}.json"
local file_uri=$(jq ".file.uri" "file_info_${display_name}.json")
echo "file_uri for ${display_name}: ${file_uri}"
# Clean up the downloaded PDF
rm "${display_name}.pdf"
echo "${file_uri}"
}
# Upload the first PDF
file_uri_1=$(upload_pdf "${DOC_URL_1}" "${DISPLAY_NAME_1}")
# Upload the second PDF
file_uri_2=$(upload_pdf "${DOC_URL_2}" "${DISPLAY_NAME_2}")
# Now generate content using both files
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"file_data": {"mime_type": "application/pdf", "file_uri": '$file_uri_1'}},
{"file_data": {"mime_type": "application/pdf", "file_uri": '$file_uri_2'}},
{"text": "'$PROMPT'"}
]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
Detail teknis
Gemini mendukung maksimum 1.000 halaman dokumen. Setiap halaman dokumen setara dengan 258 token.
Meskipun tidak ada batasan khusus untuk jumlah piksel dalam dokumen selain jendela konteks model, halaman yang lebih besar akan diperkecil hingga resolusi maksimum 3072x3072 sambil mempertahankan rasio aspek aslinya, sedangkan halaman yang lebih kecil akan diperbesar hingga 768x768 piksel. Tidak ada pengurangan biaya untuk halaman dengan ukuran yang lebih kecil, selain bandwidth, atau peningkatan performa untuk halaman dengan resolusi yang lebih tinggi.
Jenis dokumen
Secara teknis, Anda dapat meneruskan jenis MIME lain untuk pemahaman dokumen, seperti TXT, Markdown, HTML, XML, dll. Namun, visi dokumen hanya dapat memahami PDF secara efektif. Jenis lainnya akan diekstrak sebagai teks murni, dan model tidak akan dapat menafsirkan apa yang kita lihat dalam rendering file tersebut. Semua spesifikasi jenis file seperti diagram, HTML tag, pemformatan Markdown, dll., akan hilang.
Praktik terbaik
Untuk hasil terbaik:
- Putar halaman ke orientasi yang benar sebelum mengupload.
- Hindari halaman yang buram.
- Jika menggunakan satu halaman, tempatkan perintah teks setelah halaman.
Langkah berikutnya
Untuk mempelajari lebih lanjut, lihat referensi berikut:
- Strategi perintah file: Gemini API mendukung perintah dengan data teks, gambar, audio, dan video, yang juga dikenal sebagai perintah multimodal.
- Petunjuk sistem: Petunjuk sistem memungkinkan Anda mengarahkan perilaku model berdasarkan kebutuhan dan kasus penggunaan spesifik Anda.