Modele Gemini są dostępne przy użyciu bibliotek OpenAI (Python i TypeScript/JavaScript) oraz interfejsu REST API. Wystarczy zaktualizować 3 linie kodu i użyć klucza interfejsu Gemini API. Jeśli nie korzystasz jeszcze z bibliotek OpenAI, zalecamy bezpośrednie wywoływanie interfejsu Gemini API.
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.5-flash",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "Explain to me how AI works"
}
]
)
print(response.choices[0].message)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{
role: "user",
content: "Explain to me how AI works",
},
],
});
console.log(response.choices[0].message);
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.0-flash",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
]
}'
Co się zmieniło? Tylko 3 wiersze!
api_key="GEMINI_API_KEY": zastąp „GEMINI_API_KEY” rzeczywistym kluczem interfejsu Gemini API, który możesz uzyskać w Google AI Studio.base_url="https://generativelanguage.googleapis.com/v1beta/openai/": Ten kod informuje bibliotekę OpenAI, aby wysyłała żądania do punktu końcowego interfejsu Gemini API zamiast do domyślnego adresu URL.model="gemini-2.5-flash": wybierz zgodny model Gemini
Myślenie
Modele Gemini 3 i 2.5 są trenowane tak, aby rozwiązywać złożone problemy, co znacznie poprawia ich zdolność do wnioskowania. Interfejs Gemini API ma parametry myślenia, które zapewniają precyzyjną kontrolę nad tym, jak bardzo model będzie myśleć.
Gemini 3 korzysta z poziomów myślenia "low" i "high", a modele Gemini 2.5 – z dokładnych budżetów myślenia. Odpowiadają one działaniom OpenAI w zakresie rozumowania w ten sposób:
reasoning_effort (OpenAI) |
thinking_level (Gemini 3) |
thinking_budget (Gemini 2.5) |
|---|---|---|
minimal |
low |
1,024 |
low |
low |
1,024 |
medium |
high |
8,192 |
high |
high |
24,576 |
Jeśli nie podasz wartości reasoning_effort, Gemini użyje domyślnego poziomu lub budżetu modelu.
Jeśli chcesz wyłączyć myślenie, możesz ustawić reasoning_effort na "none" w przypadku modeli 2.5. Nie można wyłączyć rozumowania w przypadku modeli Gemini 2.5 Pro i 3.
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.5-flash",
reasoning_effort="low",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "Explain to me how AI works"
}
]
)
print(response.choices[0].message)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
model: "gemini-2.5-flash",
reasoning_effort: "low",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{
role: "user",
content: "Explain to me how AI works",
},
],
});
console.log(response.choices[0].message);
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.5-flash",
"reasoning_effort": "low",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
]
}'
Modele Gemini generują też podsumowania myśli.
W polu extra_body możesz uwzględnić w żądaniu pola Gemini.
Pamiętaj, że funkcje reasoning_effort i thinking_level/thinking_budget pokrywają się, więc nie można ich używać w tym samym czasie.
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.5-flash",
messages=[{"role": "user", "content": "Explain to me how AI works"}],
extra_body={
'extra_body': {
"google": {
"thinking_config": {
"thinking_budget": "low",
"include_thoughts": True
}
}
}
}
)
print(response.choices[0].message)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
model: "gemini-2.5-flash",
messages: [{role: "user", content: "Explain to me how AI works",}],
extra_body: {
"google": {
"thinking_config": {
"thinking_budget": "low",
"include_thoughts": true
}
}
}
});
console.log(response.choices[0].message);
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.5-flash",
"messages": [{"role": "user", "content": "Explain to me how AI works"}],
"extra_body": {
"google": {
"thinking_config": {
"include_thoughts": true
}
}
}
}'
Gemini 3 obsługuje zgodność z OpenAI w przypadku sygnatur myśli w interfejsach API do uzupełniania czatu. Pełny przykład znajdziesz na stronie podpisów myśli.
Streaming
Interfejs Gemini API obsługuje strumieniowanie odpowiedzi.
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream=True
)
for chunk in response:
print(chunk.choices[0].delta)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const completion = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream: true,
});
for await (const chunk of completion) {
console.log(chunk.choices[0].delta.content);
}
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.0-flash",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
],
"stream": true
}'
Wywoływanie funkcji
Wywoływanie funkcji ułatwia uzyskiwanie ustrukturyzowanych danych wyjściowych z modeli generatywnych i jest obsługiwane w interfejsie Gemini API.
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=messages,
tools=tools,
tool_choice="auto"
)
print(response)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}];
const tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
];
const response = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: messages,
tools: tools,
tool_choice: "auto",
});
console.log(response);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.0-flash",
"messages": [
{
"role": "user",
"content": "What'\''s the weather like in Chicago today?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto"
}'
Rozpoznawanie obrazów
Modele Gemini są natywnie multimodalne i zapewniają najlepszą w swojej klasie wydajność w przypadku wielu typowych zadań związanych z analizą obrazu.
Python
import base64
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Getting the base64 string
base64_image = encode_image("Path/to/agi/image.jpeg")
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
},
},
],
}
],
)
print(response.choices[0])
JavaScript
import OpenAI from "openai";
import fs from 'fs/promises';
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function encodeImage(imagePath) {
try {
const imageBuffer = await fs.readFile(imagePath);
return imageBuffer.toString('base64');
} catch (error) {
console.error("Error encoding image:", error);
return null;
}
}
async function main() {
const imagePath = "Path/to/agi/image.jpeg";
const base64Image = await encodeImage(imagePath);
const messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": `data:image/jpeg;base64,${base64Image}`
},
},
],
}
];
try {
const response = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: messages,
});
console.log(response.choices[0]);
} catch (error) {
console.error("Error calling Gemini API:", error);
}
}
main();
REST
bash -c '
base64_image=$(base64 -i "Path/to/agi/image.jpeg");
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d "{
\"model\": \"gemini-2.0-flash\",
\"messages\": [
{
\"role\": \"user\",
\"content\": [
{ \"type\": \"text\", \"text\": \"What is in this image?\" },
{
\"type\": \"image_url\",
\"image_url\": { \"url\": \"data:image/jpeg;base64,${base64_image}\" }
}
]
}
]
}"
'
Generowanie obrazu
Wygeneruj obraz:
Python
import base64
from openai import OpenAI
from PIL import Image
from io import BytesIO
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
)
response = client.images.generate(
model="imagen-3.0-generate-002",
prompt="a portrait of a sheepadoodle wearing a cape",
response_format='b64_json',
n=1,
)
for image_data in response.data:
image = Image.open(BytesIO(base64.b64decode(image_data.b64_json)))
image.show()
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
const image = await openai.images.generate(
{
model: "imagen-3.0-generate-002",
prompt: "a portrait of a sheepadoodle wearing a cape",
response_format: "b64_json",
n: 1,
}
);
console.log(image.data);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/images/generations" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "imagen-3.0-generate-002",
"prompt": "a portrait of a sheepadoodle wearing a cape",
"response_format": "b64_json",
"n": 1,
}'
Rozpoznawanie dźwięku
Analizowanie danych wejściowych audio:
Python
import base64
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
with open("/path/to/your/audio/file.wav", "rb") as audio_file:
base64_audio = base64.b64encode(audio_file.read()).decode('utf-8')
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Transcribe this audio",
},
{
"type": "input_audio",
"input_audio": {
"data": base64_audio,
"format": "wav"
}
}
],
}
],
)
print(response.choices[0].message.content)
JavaScript
import fs from "fs";
import OpenAI from "openai";
const client = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
const audioFile = fs.readFileSync("/path/to/your/audio/file.wav");
const base64Audio = Buffer.from(audioFile).toString("base64");
async function main() {
const response = await client.chat.completions.create({
model: "gemini-2.0-flash",
messages: [
{
role: "user",
content: [
{
type: "text",
text: "Transcribe this audio",
},
{
type: "input_audio",
input_audio: {
data: base64Audio,
format: "wav",
},
},
],
},
],
});
console.log(response.choices[0].message.content);
}
main();
REST
bash -c '
base64_audio=$(base64 -i "/path/to/your/audio/file.wav");
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d "{
\"model\": \"gemini-2.0-flash\",
\"messages\": [
{
\"role\": \"user\",
\"content\": [
{ \"type\": \"text\", \"text\": \"Transcribe this audio file.\" },
{
\"type\": \"input_audio\",
\"input_audio\": {
\"data\": \"${base64_audio}\",
\"format\": \"wav\"
}
}
]
}
]
}"
'
Uporządkowane dane wyjściowe
Modele Gemini mogą generować obiekty JSON w dowolnej zdefiniowanej przez Ciebie strukturze.
Python
from pydantic import BaseModel
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
completion = client.beta.chat.completions.parse(
model="gemini-2.0-flash",
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "John and Susan are going to an AI conference on Friday."},
],
response_format=CalendarEvent,
)
print(completion.choices[0].message.parsed)
JavaScript
import OpenAI from "openai";
import { zodResponseFormat } from "openai/helpers/zod";
import { z } from "zod";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai"
});
const CalendarEvent = z.object({
name: z.string(),
date: z.string(),
participants: z.array(z.string()),
});
const completion = await openai.chat.completions.parse({
model: "gemini-2.0-flash",
messages: [
{ role: "system", content: "Extract the event information." },
{ role: "user", content: "John and Susan are going to an AI conference on Friday" },
],
response_format: zodResponseFormat(CalendarEvent, "event"),
});
const event = completion.choices[0].message.parsed;
console.log(event);
Wektory dystrybucyjne
Wektory dystrybucyjne tekstu mierzą podobieństwo ciągów tekstowych i można je generować za pomocą interfejsu Gemini API.
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.embeddings.create(
input="Your text string goes here",
model="gemini-embedding-001"
)
print(response.data[0].embedding)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const embedding = await openai.embeddings.create({
model: "gemini-embedding-001",
input: "Your text string goes here",
});
console.log(embedding);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"input": "Your text string goes here",
"model": "gemini-embedding-001"
}'
Batch API
Za pomocą biblioteki OpenAI możesz tworzyć zadania wsadowe, przesyłać je i sprawdzać ich stan.
Musisz przygotować plik JSONL w formacie wejściowym OpenAI. Na przykład:
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gemini-2.5-flash", "messages": [{"role": "user", "content": "Tell me a one-sentence joke."}]}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gemini-2.5-flash", "messages": [{"role": "user", "content": "Why is the sky blue?"}]}}
Zgodność z OpenAI w przypadku Batch umożliwia tworzenie zadań wsadowych, monitorowanie stanu zadań i wyświetlanie wyników zadań wsadowych.
Zgodność przesyłania i pobierania nie jest obecnie obsługiwana. W poniższym przykładzie używamy klienta genai do przesyłania i pobierania plików, tak samo jak w przypadku korzystania z interfejsu Batch API Gemini.
Python
from openai import OpenAI
# Regular genai client for uploads & downloads
from google import genai
client = genai.Client()
openai_client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
# Upload the JSONL file in OpenAI input format, using regular genai SDK
uploaded_file = client.files.upload(
file='my-batch-requests.jsonl',
config=types.UploadFileConfig(display_name='my-batch-requests', mime_type='jsonl')
)
# Create batch
batch = openai_client.batches.create(
input_file_id=batch_input_file_id,
endpoint="/v1/chat/completions",
completion_window="24h"
)
# Wait for batch to finish (up to 24h)
while True:
batch = client.batches.retrieve(batch.id)
if batch.status in ('completed', 'failed', 'cancelled', 'expired'):
break
print(f"Batch not finished. Current state: {batch.status}. Waiting 30 seconds...")
time.sleep(30)
print(f"Batch finished: {batch}")
# Download results in OpenAI output format, using regular genai SDK
file_content = genai_client.files.download(file=batch.output_file_id).decode('utf-8')
# See batch_output JSONL in OpenAI output format
for line in file_content.splitlines():
print(line)
Pakiet SDK OpenAI obsługuje też generowanie wektorów za pomocą interfejsu Batch API. Aby to zrobić, zamień pole endpoint metody create na punkt końcowy osadzania, a także klucze url i model w pliku JSONL:
# JSONL file using embeddings model and endpoint
# {"custom_id": "request-1", "method": "POST", "url": "/v1/embeddings", "body": {"model": "ggemini-embedding-001", "messages": [{"role": "user", "content": "Tell me a one-sentence joke."}]}}
# {"custom_id": "request-2", "method": "POST", "url": "/v1/embeddings", "body": {"model": "gemini-embedding-001", "messages": [{"role": "user", "content": "Why is the sky blue?"}]}}
# ...
# Create batch step with embeddings endpoint
batch = openai_client.batches.create(
input_file_id=batch_input_file_id,
endpoint="/v1/embeddings",
completion_window="24h"
)
Pełny przykład znajdziesz w sekcji Generowanie osadzania wsadowego w przewodniku zgodności z OpenAI.
extra_body
Gemini obsługuje kilka funkcji, które nie są dostępne w modelach OpenAI, ale można je włączyć za pomocą pola extra_body.
extra_body funkcje
cached_content |
Odpowiada GenerateContentRequest.cached_content Gemini. |
thinking_config |
Odpowiada ThinkingConfig Gemini. |
cached_content
Oto przykład użycia właściwości extra_body do ustawienia właściwości cached_content:
Python
from openai import OpenAI
client = OpenAI(
api_key=MY_API_KEY,
base_url="https://generativelanguage.googleapis.com/v1beta/"
)
stream = client.chat.completions.create(
model="gemini-2.5-pro",
n=1,
messages=[
{
"role": "user",
"content": "Summarize the video"
}
],
stream=True,
stream_options={'include_usage': True},
extra_body={
'extra_body':
{
'google': {
'cached_content': "cachedContents/0000aaaa1111bbbb2222cccc3333dddd4444eeee"
}
}
}
)
for chunk in stream:
print(chunk)
print(chunk.usage.to_dict())
Wyświetlenie listy modeli
Wyświetl listę dostępnych modeli Gemini:
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
models = client.models.list()
for model in models:
print(model.id)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
const list = await openai.models.list();
for await (const model of list) {
console.log(model);
}
}
main();
REST
curl https://generativelanguage.googleapis.com/v1beta/openai/models \
-H "Authorization: Bearer GEMINI_API_KEY"
Pobieranie modelu
Pobierz model Gemini:
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
model = client.models.retrieve("gemini-2.0-flash")
print(model.id)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
const model = await openai.models.retrieve("gemini-2.0-flash");
console.log(model.id);
}
main();
REST
curl https://generativelanguage.googleapis.com/v1beta/openai/models/gemini-2.0-flash \
-H "Authorization: Bearer GEMINI_API_KEY"
Obecne ograniczenia
Obsługa bibliotek OpenAI jest nadal w wersji beta, ponieważ rozszerzamy obsługę funkcji.
Jeśli masz pytania dotyczące obsługiwanych parametrów, nadchodzących funkcji lub napotkasz problemy z rozpoczęciem korzystania z Gemini, dołącz do naszego forum dla programistów.
Co dalej?
Aby zapoznać się ze szczegółowymi przykładami, wypróbuj nasz notatnik Colab dotyczący zgodności z OpenAI.