Gemini API 支援 PDF 輸入內容,包括長文件 (最多 3600 頁)。Gemini 模型會使用原生視覺技術處理 PDF,因此能夠解讀文件中的文字和圖像內容。透過原生 PDF 視覺支援功能,Gemini 模型可執行以下操作:
- 分析文件中的圖表、圖表和表格
- 將資訊擷取至結構化輸出格式
- 回答文件中圖像和文字內容的問題
- 生成文件摘要
- 將文件內容轉錄為 HTML 等格式,並保留版面配置和格式,以利於在後續應用程式中使用
本教學課程將示範幾種可能的使用方式,說明如何使用 Gemini API 處理 PDF 文件。
PDF 輸入
如果 PDF 酬載小於 20 MB,您可以選擇上傳以 base64 編碼的文件,或直接上傳儲存在本機的檔案。
以 inline_data 格式
您可以直接從網址處理 PDF 文件。以下是如何執行這項操作的程式碼片段:
DOC_URL="https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf"
PROMPT="Summarize this document"
DISPLAY_NAME="base64_pdf"
# Download the PDF
wget -O "${DISPLAY_NAME}.pdf" "${DOC_URL}"
# Check for FreeBSD base64 and set flags accordingly
if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
B64FLAGS="--input"
else
B64FLAGS="-w0"
fi
# Base64 encode the PDF
ENCODED_PDF=$(base64 $B64FLAGS "${DISPLAY_NAME}.pdf")
# Generate content using the base64 encoded PDF
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"inline_data": {"mime_type": "application/pdf", "data": "'"$ENCODED_PDF"'"}},
{"text": "'$PROMPT'"}
]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
# Clean up the downloaded PDF
rm "${DISPLAY_NAME}.pdf"
技術詳細資料
Gemini 1.5 Pro 和 1.5 Flash 最多支援 3,600 頁的文件。文件頁面必須採用下列其中一種文字資料 MIME 類型:
- PDF -
application/pdf
- JavaScript -
application/x-javascript
、text/javascript
- Python -
application/x-python
,text/x-python
- TXT -
text/plain
- HTML -
text/html
- CSS -
text/css
- Markdown -
text/md
- CSV -
text/csv
- XML -
text/xml
- RTF -
text/rtf
每個文件頁面相當於 258 個符記。
除了模型的內容視窗之外,文件中的像素數量並無特定限制,較大的頁面會縮放至 3072x3072 的最大解析度,同時保留原始的顯示比例,較小的頁面則會縮放至 768x768 像素。除了頻寬,較小尺寸的網頁不會降低成本,也不會提高較高解析度的網頁效能。
為確保最佳成效:
- 上傳前請先將頁面旋轉至正確方向。
- 避免顯示模糊的網頁。
- 如果使用單一頁面,請將文字提示放在該頁面後方。
大型 PDF 檔案
您可以使用 File API 上傳任何大小的文件。如果總要求大小 (包括檔案、文字提示、系統指示等) 超過 20 MB,請一律使用 File API。
呼叫 media.upload
,使用 File API 上傳檔案。以下程式碼會上傳文件檔案,然後在對 models.generateContent
的呼叫中使用該檔案。
來自網址的大型 PDF
針對可透過網址存取的大型 PDF 檔案,使用 File API,簡化直接透過網址上傳及處理這些文件的程序:
PDF_PATH="https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf"
DISPLAY_NAME="A17_FlightPlan"
PROMPT="Summarize this document"
# Download the PDF from the provided URL
wget -O "${DISPLAY_NAME}.pdf" "${PDF_PATH}"
MIME_TYPE=$(file -b --mime-type "${DISPLAY_NAME}.pdf")
NUM_BYTES=$(wc -c < "${DISPLAY_NAME}.pdf")
echo "MIME_TYPE: ${MIME_TYPE}"
echo "NUM_BYTES: ${NUM_BYTES}"
tmp_header_file=upload-header.tmp
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${DISPLAY_NAME}.pdf" 2> /dev/null > file_info.json
file_uri=$(jq ".file.uri" file_info.json)
echo "file_uri: ${file_uri}"
# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "'$PROMPT'"},
{"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
# Clean up the downloaded PDF
rm "${DISPLAY_NAME}.pdf"
儲存在本機的大型 PDF 檔案
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT
tmp_header_file=upload-header.tmp
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: application/pdf" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json
file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri
# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "Can you add a few more lines to this poem?"},
{"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
您可以呼叫 files.get
,驗證 API 是否已成功儲存上傳的檔案,並取得其中繼資料。只有 name
(以及擴充功能 uri
) 是唯一的。
name=$(jq ".file.name" file_info.json)
# Get the file of interest to check state
curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
# Print some information about the file you got
name=$(jq ".file.name" file_info.json)
echo name=$name
file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri
多個 PDF
只要文件和文字提示的總大小仍在模型的脈絡視窗內,Gemini API 就能在單一要求中處理多個 PDF 文件。
DOC_URL_1="https://arxiv.org/pdf/2312.11805"
DOC_URL_2="https://arxiv.org/pdf/2403.05530"
DISPLAY_NAME_1="Gemini_paper"
DISPLAY_NAME_2="Gemini_1.5_paper"
PROMPT="What is the difference between each of the main benchmarks between these two papers? Output these in a table."
# Function to download and upload a PDF
upload_pdf() {
local doc_url="$1"
local display_name="$2"
# Download the PDF
wget -O "${display_name}.pdf" "${doc_url}"
local MIME_TYPE=$(file -b --mime-type "${display_name}.pdf")
local NUM_BYTES=$(wc -c < "${display_name}.pdf")
echo "MIME_TYPE: ${MIME_TYPE}"
echo "NUM_BYTES: ${NUM_BYTES}"
local tmp_header_file=upload-header.tmp
# Initial resumable request
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D "${tmp_header_file}" \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${display_name}'}}" 2> /dev/null
local upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the PDF
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${display_name}.pdf" 2> /dev/null > "file_info_${display_name}.json"
local file_uri=$(jq ".file.uri" "file_info_${display_name}.json")
echo "file_uri for ${display_name}: ${file_uri}"
# Clean up the downloaded PDF
rm "${display_name}.pdf"
echo "${file_uri}"
}
# Upload the first PDF
file_uri_1=$(upload_pdf "${DOC_URL_1}" "${DISPLAY_NAME_1}")
# Upload the second PDF
file_uri_2=$(upload_pdf "${DOC_URL_2}" "${DISPLAY_NAME_2}")
# Now generate content using both files
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"file_data": {"mime_type": "application/pdf", "file_uri": '$file_uri_1'}},
{"file_data": {"mime_type": "application/pdf", "file_uri": '$file_uri_2'}},
{"text": "'$PROMPT'"}
]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
後續步驟
如要進一步瞭解相關內容,請參閱下列資源: