教程:函数调用

<ph type="x-smartling-placeholder"></ph>

函数调用可让您更轻松地从 Google Cloud 控制台获取结构化数据输出 生成模型。然后,您可以使用这些输出来调用其他 API 并返回 将相关的响应数据提供给模型。换句话说,函数调用有助于 将生成模型连接到外部系统, 可提供最新、最准确的信息。

您可以为 Gemini 模型提供函数说明。这些是 以应用语言编写的函数(也就是说,它们 Google Cloud Functions)。模型可能会要求您调用一个函数并返回 帮助模型处理您的查询。

如果您还没看过 函数调用简介(用于学习相关知识)

照明控制示例 API

假设您有一个带有应用编程接口 (API) 的基本照明控制系统,并且希望允许用户通过简单的文本请求控制灯具。您可以使用函数调用功能来解读用户发来的照明更改请求,并将其转换为 API 调用以设置照明值。通过这个假想的照明控制系统,您可以控制灯的亮度和色温,这两个参数定义如下:

参数 类型 是否必需 说明
brightness number 光级范围为 0 到 100。0 表示关闭,100 表示完整亮度。
colorTemperature 字符串 灯具的色温,可以是 daylightcoolwarm

为简单起见,这个虚构的照明系统只有一个光源,因此用户 不需要指定房间或地点。下面是一个 JSON 请求示例 您可以发送到照明控制 API,将亮度更改为 50% 使用日光色温:

{
  "brightness": "50",
  "colorTemperature": "daylight"
}

本教程介绍了如何为 Gemini API 设置函数调用, 解释用户的照明请求,并将其映射到 API 设置,以控制 亮度和色温值

准备工作:设置您的项目和 API 密钥

在调用 Gemini API 之前,您需要设置项目并配置 您的 API 密钥。

定义 API 函数

创建一个发出 API 请求的函数。此函数应在应用代码中定义,但可以调用应用之外的服务或 API。Gemini API 不会直接调用此函数,因此您需要 可以通过您的应用控制如何以及何时执行此函数 代码。为便于演示,本教程定义了一个模拟 API 函数, 仅返回请求的光照值:

async function setLightValues(brightness, colorTemp) {
  // This mock API returns the requested lighting values
  return {
    brightness: brightness,
    colorTemperature: colorTemp
  };
}

创建函数声明

创建将传递给生成模型的函数声明。时间 声明一个函数以供模型使用,则应尽可能多地提供 函数和参数说明中提供的信息。生成模型 根据这些信息确定要选择的函数以及如何提供 函数调用中参数的值。以下代码展示了如何声明照明控制函数:

const controlLightFunctionDeclaration = {
  name: "controlLight",
  parameters: {
    type: "OBJECT",
    description: "Set the brightness and color temperature of a room light.",
    properties: {
      brightness: {
        type: "NUMBER",
        description: "Light level from 0 to 100. Zero is off and 100 is full brightness.",
      },
      colorTemperature: {
        type: "STRING",
        description: "Color temperature of the light fixture which can be `daylight`, `cool` or `warm`.",
      },
    },
    required: ["brightness", "colorTemperature"],
  },
};

// Executable function code. Put it in a map keyed by the function name
// so that you can call it once you get the name string from the model.
const functions = {
  controlLight: ({ brightness, colorTemperature }) => {
    return setLightValues( brightness, colorTemperature)
  }
};

在模型初始化期间声明函数

如果要对模型使用函数调用,则必须提供 函数声明。你声明函数 方法是设置模型的 tools 参数:

const { GoogleGenerativeAI } = require("@google/generative-ai");

// Access your API key as an environment variable (see "Set up your API key" above)
const genAI = new GoogleGenerativeAI(process.env.API_KEY);

// ...

const generativeModel = genAI.getGenerativeModel({
  // Use a model that supports function calling, like a Gemini 1.5 model
  model: "gemini-1.5-flash",

  // Specify the function declaration.
  tools: {
    functionDeclarations: [controlLightFunctionDeclaration],
  },
});

生成函数调用

使用函数声明初始化模型后,您可以 用定义的函数提示模型。您应该使用函数调用 使用聊天提示 (sendMessage()),因为通常调用函数 从获取之前提示和回答的上下文中受益。

const chat = generativeModel.startChat();
const prompt = "Dim the lights so the room feels cozy and warm.";

// Send the message to the model.
const result = await chat.sendMessage(prompt);

// For simplicity, this uses the first function call found.
const call = result.response.functionCalls()[0];

if (call) {
  // Call the executable function named in the function call
  // with the arguments specified in the function call and
  // let it call the hypothetical API.
  const apiResponse = await functions[call.name](call.args);

  // Send the API response back to the model so it can generate
  // a text response that can be displayed to the user.
  const result2 = await chat.sendMessage([{functionResponse: {
    name: 'controlLight',
    response: apiResponse
  }}]);

  // Log the text response.
  console.log(result2.response.text());
}