Bạn có thể truy cập vào các mô hình Gemini bằng cách sử dụng thư viện OpenAI (Python và TypeScript/JavaScript) cùng với API REST, bằng cách cập nhật 3 dòng mã và sử dụng khoá API Gemini. Nếu chưa sử dụng thư viện OpenAI, bạn nên gọi trực tiếp API Gemini.
Python
from openai import OpenAI
client = OpenAI(
api_key="gemini_api_key",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-1.5-flash",
n=1,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "Explain to me how AI works"
}
]
)
print(response.choices[0].message)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "gemini_api_key",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
model: "gemini-1.5-flash",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{
role: "user",
content: "Explain to me how AI works",
},
],
});
console.log(response.choices[0].message);
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer gemini_api_key" \
-d '{
"model": "gemini-1.5-flash",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
]
}'
Phát trực tiếp
Gemini API hỗ trợ phản hồi truyền trực tuyến.
Python
from openai import OpenAI
client = OpenAI(
api_key="gemini_api_key",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-1.5-flash",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream=True
)
for chunk in response:
print(chunk.choices[0].delta)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "gemini_api_key",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const completion = await openai.chat.completions.create({
model: "gemini-1.5-flash",
messages: [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream: true,
});
for await (const chunk of completion) {
console.log(chunk.choices[0].delta.content);
}
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer gemini_api_key" \
-d '{
"model": "gemini-1.5-flash",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
],
"stream": true
}'
Lệnh gọi hàm
Lệnh gọi hàm giúp bạn dễ dàng nhận được đầu ra dữ liệu có cấu trúc từ các mô hình tạo sinh và được hỗ trợ trong API Gemini.
Python
from openai import OpenAI
client = OpenAI(
api_key="gemini_api_key",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
model="gemini-1.5-flash",
messages=messages,
tools=tools,
tool_choice="auto"
)
print(response)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "gemini_api_key",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}];
const tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
];
const response = await openai.chat.completions.create({
model: "gemini-1.5-flash",
messages: messages,
tools: tools,
tool_choice: "auto",
});
console.log(response);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer gemini_api_key" \
-d '{
"model": "gemini-1.5-flash",
"messages": [
{
"role": "user",
"content": "What'\''s the weather like in Chicago today?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto"
}'
Nhúng
Các mục nhúng văn bản đo lường mức độ liên quan của các chuỗi văn bản và có thể được tạo bằng Gemini API.
Python
from openai import OpenAI
client = OpenAI(
api_key="gemini_api_key",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.embeddings.create(
input="Your text string goes here",
model="text-embedding-004"
)
print(response.data[0].embedding)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "gemini_api_key",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const embedding = await openai.embeddings.create({
model: "text-embedding-004",
input: "Your text string goes here",
});
console.log(embedding);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer gemini_api_key" \
-d '{
"input": "Your text string goes here",
"model": "text-embedding-004"
}'
Các hạn chế hiện tại
Dịch vụ hỗ trợ cho các thư viện OpenAI vẫn đang trong giai đoạn thử nghiệm trong khi chúng tôi mở rộng phạm vi hỗ trợ tính năng. Các chức năng sau đây bị hạn chế:
- Tải hình ảnh lên bằng URL / Base64
- Kết quả có cấu trúc
Nếu bạn có thắc mắc về các thông số được hỗ trợ, tính năng sắp ra mắt hoặc gặp bất kỳ vấn đề nào khi bắt đầu sử dụng Gemini, hãy tham gia Diễn đàn dành cho nhà phát triển của chúng tôi.