La famiglia di modelli aperti Gemma include una gamma di dimensioni, funzionalità e varianti specializzate per le attività per aiutarti a creare soluzioni generative personalizzate.
Di seguito sono riportati i percorsi principali che puoi seguire quando utilizzi i modelli Gemma in un'applicazione:
Seleziona un modello ed eseguine il deployment così com'è nella tua applicazione
Seleziona un modello, ottimalizalo per un'attività specifica, quindi eseguine il deployment in un'applicazione o condividilo con la community.
Questa guida ti aiuta a iniziare a scegliere un modello, a testarne
le funzionalità e, facoltativamente, a ottimizzarlo per la tua applicazione.
Questa sezione ti aiuta a comprendere le varianti ufficiali della famiglia di modelli Gemma e a selezionare un modello per la tua applicazione. Le varianti del modello forniscono funzionalità generali o sono specializzate per attività specifiche e sono disponibili in dimensioni di parametri diverse, in modo da poter scegliere un modello con le funzionalità che preferisci e che soddisfi i tuoi requisiti di calcolo.
Elenco dei modelli Gemma
La tabella seguente elenca le principali varianti della famiglia di modelli Gemma e le relative piattaforme di implementazione previste:
Puoi testare i modelli Gemma configurando un ambiente di sviluppo con un
modello scaricato e il software di supporto. Puoi quindi chiedere al modello di rispondere e
valutarne le risposte. Utilizza uno dei seguenti notebook Python con il tuo
framework di machine learning preferito per configurare un ambiente di test e richiedere
un modello Gemma:
Puoi testare rapidamente Gemma senza configurare un ambiente di sviluppo utilizzando
Google AI Studio. Questa applicazione web ti consente di provare i prompt con Gemma
e di valutarne le funzionalità.
Puoi modificare il comportamento dei modelli Gemma eseguendo la loro ottimizzazione. L'ottimizzazione
di un modello richiede un set di dati di input e risposte previste di dimensioni sufficientemente grandi
e con una variazione sufficiente per guidare il comportamento del modello. Inoltre, sono necessarie risorse di calcolo e memoria molto maggiori per completare una corsa di ottimizzazione rispetto all'esecuzione di un modello Gemma per la generazione di testo. Utilizza uno dei seguenti notebook Python per configurare un ambiente di sviluppo per l'ottimizzazione e ottimizzare un modello Gemma:
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Mancano le informazioni di cui ho bisogno","missingTheInformationINeed","thumb-down"],["Troppo complicato/troppi passaggi","tooComplicatedTooManySteps","thumb-down"],["Obsoleti","outOfDate","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Problema relativo a esempi/codice","samplesCodeIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-06-03 UTC."],[],[],null,["# Get started with Gemma models\n\nThe Gemma family of open models includes a range of model sizes, capabilities,\nand task-specialized variations to help you build custom generative solutions.\nThese are the main paths you can follow when using Gemma models in an\napplication:\n\n- Select a model and **deploy it as-is** in your application\n- Select a model, **tune it for a specific task**, and then deploy it in an application, or share it with the community.\n\nThis guide helps you get started with [picking](#pick) a model, [testing](#test)\nits capabilities, and optionally, [tuning](#tune) the model you selected for\nyour application.\n| **Tip:** As you begin implementing AI applications, make sure your are following a principled approach to AI that serves all your users with the [Responsible Generative AI Toolkit](/responsible).\n\n[Try Gemma 3](https://aistudio.google.com/prompts/new_chat?model=gemma-3-27b-it)\n[Get it on Kaggle](https://www.kaggle.com/models?query=gemma3&publisher=google)\n[Get it on Hugging Face](https://huggingface.co/models?search=google/gemma-3)\n\nPick a model\n------------\n\nThis section helps you understand the official variants of the Gemma model\nfamily and select a model for your application. The model variants provide\ngeneral capabilities or are specialized for specific tasks, and are provided\nin different parameter sizes so you can pick a model that has your preferred\ncapabilities and meets your compute requirements.\n| **Tip:** A good place to start is the [Gemma 3 4B](https://www.kaggle.com/models/google/gemma-3) model in the latest available version, which can be used for many tasks and has lower resource requirements.\n\n### Gemma models list\n\nThe following table lists the major variants of the Gemma model family and their\nintended deployment platforms:\n\n| **Parameter size** | **Input** | **Output** | **Variant** | **Foundation** | **Intended platforms** |\n|--------------------|---------------------|------------|-------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|\n| 270M | Text | Text | - [Gemma 3 (core)](/gemma/docs/core) | [Gemma 3](/gemma/docs/core/model_card_3) | Mobile devices and single board computers |\n| 1B | Text | Text | - [Gemma 3 (core)](/gemma/docs/core) | [Gemma 3](/gemma/docs/core/model_card_3) | Mobile devices and single board computers |\n| E2B | Text, images, audio | Text | - [Gemma 3n](/gemma/docs/gemma-3n) | [Gemma 3n](/gemma/docs/gemma-3n/model_card) | Mobile devices |\n| 2B | Text | Text | - [Gemma 2 (core)](/gemma/docs/core) | [Gemma 2](/gemma/docs/core/model_card_2) | Mobile devices and laptops |\n| 2B | Text | Text | - [Gemma (core)](/gemma/docs/core) - [CodeGemma](/gemma/docs/codegemma) | [Gemma 1](/gemma/docs/core/model_card) | Mobile devices and laptops |\n| 3B | Text, images | Text | - [PaliGemma 2](/gemma/docs/paligemma) | [Gemma 2](/gemma/docs/core/model_card_2) | Desktop computers and small servers |\n| E4B | Text, images, audio | Text | - [Gemma 3n](/gemma/docs/gemma-3n) | [Gemma 3n](/gemma/docs/gemma-3n/model_card) | Mobile devices and laptops |\n| 4B | Text, images | Text | - [Gemma 3 (core)](/gemma/docs/core) | [Gemma 3](/gemma/docs/core/model_card_3) | Desktop computers and small servers |\n| 7B | Text | Text | - [Gemma (core)](/gemma/docs/core) - [CodeGemma](/gemma/docs/codegemma) | [Gemma 1](/gemma/docs/core/model_card) | Desktop computers and small servers |\n| 9B | Text | Text | - [Gemma 2 (core)](/gemma/docs/core) | [Gemma 2](/gemma/docs/core/model_card_2) | Higher-end desktop computers and servers |\n| 10B | Text, images | Text | - [PaliGemma 2](/gemma/docs/paligemma) | [Gemma 2](/gemma/docs/core/model_card_2) | Higher-end desktop computers and servers |\n| 12B | Text, images | Text | - [Gemma 3 (core)](/gemma/docs/core) | [Gemma 3](/gemma/docs/core/model_card_3) | Higher-end desktop computers and servers |\n| 27B | Text, images | Text | - [Gemma 3 (core)](/gemma/docs/core) | [Gemma 3](/gemma/docs/core/model_card_3) | Large servers or server clusters |\n| 27B | Text | Text | - [Gemma 2 (core)](/gemma/docs/core) | [Gemma 2](/gemma/docs/core/model_card_2) | Large servers or server clusters |\n| 28B | Text, images | Text | - [PaliGemma 2](/gemma/docs/paligemma) | [Gemma 2](/gemma/docs/core/model_card_2) | Large servers or server clusters |\n\nThe Gemma family of models also includes special-purpose and research models,\nincluding\n[ShieldGemma](/gemma/docs/shieldgemma),\n[DataGemma](/gemma/docs/datagemma),\n[Gemma Scope](/gemma/docs/gemmascope),\nand\n[Gemma-APS](/gemma/docs/gemma-aps).\n| **Tip:** You can download official Google Gemma model variants and community-created variants from [Kaggle Models](https://www.kaggle.com/models?query=gemma) and [Hugging Face](https://huggingface.co/models?search=google/gemma).\n\nTest models\n-----------\n\nYou can test Gemma models by setting up a development environment with a\ndownloaded model and supporting software. You can then prompt the model and\nevaluate its responses. Use one of the following Python notebooks with your\npreferred machine learning framework to set up a testing environment and prompt\na Gemma model:\n\n- [Inference with Keras](./core/keras_inference)\n- [Inference with PyTorch](./core/pytorch_gemma)\n- [Inference with Gemma library](./core/gemma_library)\n\n### Test Gemma 3 in AI Studio\n\nYou can quickly test Gemma without setting up a development environment using\nGoogle AI Studio. This web application lets you try out prompts with Gemma\nand evaluate its capabilities.\n\nTo try Gemma 3 in Google AI Studio:\n\n1. Open [AI Studio](https://aistudio.google.com/prompts/new_chat?model=gemma-3-27b-it).\n\n2. In the **Run settings** panel on the right side, in the **Model** field,\n select a different size **Gemma** model.\n\n3. At the bottom of the center panel, type a prompt, and select **Run**.\n\nFor more information about using AI Studio, see the\n[Google AI Studio quickstart](/gemini-api/docs/ai-studio-quickstart).\n\nTune models\n-----------\n\nYou can change the behavior of Gemma models by performing tuning on them. Tuning\na model requires a dataset of inputs and expected responses of sufficient size\nand variation to guide the behavior of the model. You also need significantly\nmore computing and memory resources to complete a tuning run compared to running\na Gemma model for text generation. Use one of the following Python notebooks to\nset up a tuning development environment and tune a Gemma model:\n\n- [Tune Gemma with Keras and LoRA tuning](./core/lora_tuning)\n- [Tune larger Gemma models with distributed training](./core/distributed_tuning)\n\nNext Steps\n----------\n\nCheck out these guides for building more solutions with Gemma:\n\n- [Create a chatbot with Gemma](./gemma_chat)\n- [Deploy Gemma to production with Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/open-models/use-gemma)\n- [Use Genkit with Ollama and Gemma](https://firebase.google.com/docs/genkit/plugins/ollama)"]]