Lihat di ai.google.dev | Berjalan di Google Colab | Buka di Vertex AI | Lihat sumber di GitHub |
Tutorial ini menunjukkan cara menyesuaikan model instruksi RecurrentGemma 2B untuk tugas terjemahan bahasa Inggris-Prancis menggunakan library recurrentgemma
Google DeepMind, JAX (library komputasi numerik berperforma tinggi), Flax (library jaringan neural berbasis JAX), Chex (library utilitas untuk menulis kode JAX Translation yang andal{/12, pengoptimalan berbasis JAX2, dan pengoptimalan teks JAX4Optax Meskipun Flax tidak digunakan secara langsung di notebook ini, Flax digunakan untuk membuat Gemma.
Library recurrentgemma
ditulis dengan JAX, Flax, Orbax (library berbasis JAX untuk utilitas pelatihan seperti checkpoint), dan SentencePiece (library tokenizer/detokenizer).
Notebook ini dapat berjalan di Google Colab dengan GPU T4 (buka Edit > Setelan notebook > Di bagian Akselerator hardware, pilih T4 GPU).
Penyiapan
Bagian berikut menjelaskan langkah-langkah untuk menyiapkan notebook agar dapat menggunakan model RecurrentGemma, termasuk akses model, mendapatkan kunci API, dan mengonfigurasi runtime notebook.
Menyiapkan akses Kaggle untuk Gemma
Untuk menyelesaikan tutorial ini, pertama-tama Anda harus mengikuti petunjuk penyiapan yang mirip dengan penyiapan Gemma dengan beberapa pengecualian:
- Dapatkan akses ke RecurrentGemma (bukan Gemma) di kaggle.com.
- Pilih runtime Colab dengan resource yang memadai untuk menjalankan model RecurrentGemma.
- Membuat dan mengkonfigurasi nama pengguna dan kunci API Kaggle.
Setelah Anda menyelesaikan penyiapan RecurrentGemma, lanjutkan ke bagian berikutnya, tempat Anda akan menetapkan variabel lingkungan untuk lingkungan Colab Anda.
Menetapkan variabel lingkungan
Menetapkan variabel lingkungan untuk KAGGLE_USERNAME
dan KAGGLE_KEY
. Saat melihat dialog "Berikan akses?", pesan, setuju untuk memberikan akses rahasia.
import os
from google.colab import userdata # `userdata` is a Colab API.
os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')
Menginstal library recurrentgemma
Akselerasi hardware Colab gratis saat ini tidak cukup untuk menjalankan notebook ini. Jika Anda menggunakan Colab Pay As You Go atau Colab Pro, klik Edit > Setelan notebook > Pilih GPU A100 > Simpan untuk mengaktifkan akselerasi hardware.
Selanjutnya, Anda perlu menginstal library recurrentgemma
Google DeepMind dari github.com/google-deepmind/recurrentgemma
. Jika mendapatkan error tentang "resolver dependensi pip", Anda biasanya bisa mengabaikannya.
pip install -q git+https://github.com/google-deepmind/recurrentgemma.git
Mengimpor library
Notebook ini menggunakan Flax (untuk jaringan neural), JAX inti, SentencePiece (untuk tokenisasi), Chex (library utilitas untuk menulis kode JAX yang andal), Optax (library pengoptimalan dan pemrosesan gradien), dan TensorFlow Datasets.
import pathlib
from typing import Any, Mapping, Iterator
import enum
import functools
import chex
import jax
import jax.numpy as jnp
import optax
import tensorflow as tf
import tensorflow_datasets as tfds
import sentencepiece as spm
from recurrentgemma import jax as recurrentgemma
Memuat model RecurrentGemma
- Muat model RecurrentGemma dengan
kagglehub.model_download
, yang menggunakan tiga argumen:
handle
: Handle model dari Kagglepath
: (String opsional) Jalur lokalforce_download
: (Boolean opsional) Memaksa untuk mendownload ulang model
RECURRENTGEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub
RECURRENTGEMMA_PATH = kagglehub.model_download(f'google/recurrentgemma/flax/{RECURRENTGEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/recurrentgemma/flax/2b-it/1/download... 100%|██████████| 3.85G/3.85G [00:50<00:00, 81.5MB/s] Extracting model files...
print('RECURRENTGEMMA_VARIANT:', RECURRENTGEMMA_VARIANT)
RECURRENTGEMMA_VARIANT: 2b-it
- Periksa lokasi bobot model dan tokenizer, lalu tetapkan variabel jalur. Direktori tokenizer akan berada di direktori utama tempat Anda mendownload model, sedangkan bobot model akan berada di sub-direktori. Contoh:
- File
tokenizer.model
akan berada di/LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1
). - Checkpoint model akan berada di
/LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1/2b-it
).
CKPT_PATH = os.path.join(RECURRENTGEMMA_PATH, RECURRENTGEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(RECURRENTGEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/2b-it TOKENIZER_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/tokenizer.model
Memuat dan menyiapkan set data MTNT dan tokenizer Gemma
Anda akan menggunakan set data MTNT (Machine Translation of Noisy Text), yang tersedia dari Set Data TensorFlow.
Download bagian set data bahasa Inggris-ke-Prancis dari set data MTNT, lalu ambil sampel dua contoh. Setiap sampel dalam set data berisi dua entri: src
: kalimat bahasa Inggris asli; dan dst
: terjemahan bahasa Prancis yang sesuai.
ds = tfds.load("mtnt/en-fr", split="train")
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0... Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s] Extraction completed...: 0 file [00:00, ? file/s] Generating splits...: 0%| | 0/3 [00:00<?, ? splits/s] Generating train examples...: 0%| | 0/35692 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-train.tfrecord*...: 0%| … Generating test examples...: 0%| | 0/1020 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-test.tfrecord*...: 0%| |… Generating valid examples...: 0%| | 0/811 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-valid.tfrecord*...: 0%| … Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data. Example 0: dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".' src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.' Example 1: dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?" src: b'Is Kameron a Little Salty About Her Lack of Air Time?'
Muat tokenizer Gemma, yang dibuat menggunakan sentencepiece.SentencePieceProcessor
:
vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
SesuaikanSentencePieceProcessor
untuk tugas terjemahan bahasa Inggris ke Prancis. Karena Anda akan menyesuaikan bagian bahasa Inggris dari model RecurrentGemma (Griffin), Anda perlu melakukan beberapa penyesuaian, seperti:
Awalan input: Menambahkan awalan umum ke setiap input akan menandakan tugas terjemahan. Misalnya, Anda dapat menggunakan perintah dengan awalan seperti
Translate this into French: [INPUT_SENTENCE]
.Akhiran awal terjemahan: Menambahkan akhiran di akhir setiap perintah akan menginstruksikan model Gemma kapan harus memulai proses terjemahan dengan tepat. Baris baru seharusnya dapat melakukan tugas ini.
Token model bahasa: Model RecurrentGemma (Griffin) memerlukan "awal urutan" token di awal setiap urutan. Demikian pula, Anda perlu menambahkan "akhir urutan" di akhir setiap contoh pelatihan.
Buat wrapper kustom di sekitar SentencePieceProcessor
sebagai berikut:
class GriffinTokenizer:
"""A custom wrapper around a SentencePieceProcessor."""
def __init__(self, spm_processor: spm.SentencePieceProcessor):
self._spm_processor = spm_processor
@property
def pad_id(self) -> int:
"""Fast access to the pad ID."""
return self._spm_processor.pad_id()
def tokenize(
self,
example: str | bytes,
prefix: str = '',
suffix: str = '',
add_eos: bool = True,
) -> jax.Array:
"""
A tokenization function.
Args:
example: Input string to tokenize.
prefix: Prefix to add to the input string.
suffix: Suffix to add to the input string.
add_eos: If True, add an end of sentence token at the end of the output
sequence.
Returns:
Tokens corresponding to the input string.
"""
int_list = [self._spm_processor.bos_id()]
int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
if add_eos:
int_list.append(self._spm_processor.eos_id())
return jnp.array(int_list, dtype=jnp.int32)
def tokenize_tf_op(
self,
str_tensor: tf.Tensor,
prefix: str = '',
suffix: str = '',
add_eos: bool = True,
) -> tf.Tensor:
"""A TensforFlow operator for the `tokenize` function."""
encoded = tf.numpy_function(
self.tokenize,
[str_tensor, prefix, suffix, add_eos],
tf.int32)
encoded.set_shape([None])
return encoded
def to_string(self, tokens: jax.Array) -> str:
"""Convert an array of tokens to a string."""
return self._spm_processor.EncodeIds(tokens.tolist())
Cobalah dengan membuat instance GriffinTokenizer
kustom baru Anda, lalu menerapkannya pada sampel kecil set data MTNT:
def tokenize_source(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(
example,
prefix='Translate this into French:\n',
suffix='\n',
add_eos=False
)
def tokenize_destination(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(example, add_eos=True)
tokenizer = GriffinTokenizer(vocab)
ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {
'src': tokenize_source(tokenizer, x['src']),
'dst': tokenize_destination(tokenizer, x['dst'])
})
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Example 0: src: [ 2 49688 736 1280 6987 235292 108 651 2778 576 1080 104745 11982 5736 832 8995 901 780 3547 665 575 573 4589 235369 2778 235265 108] dst: [ 2 2025 29653 581 664 16298 1437 55563 41435 7840 581 683 111452 581 533 235303 9776 4108 2459 679 485 235303 479 6728 579 1806 2499 709 29653 581 533 235303 101323 16054 1] Example 1: src: [ 2 49688 736 1280 6987 235292 108 2437 87150 477 476 11709 230461 8045 3636 40268 576 4252 4897 235336 108] dst: [ 2 213606 477 1455 235290 3510 748 8268 191017 2809 581 2032 69972 581 11495 1305 533 235303 65978 1654 1]
Buat loader data untuk seluruh set data MTNT:
@chex.dataclass(frozen=True)
class TrainingInput:
# Input tokens provided to the model.
input_tokens: jax.Array
# A mask that determines which tokens contribute to the target loss
# calculation.
target_mask: jax.Array
class DatasetSplit(enum.Enum):
TRAIN = 'train'
VALIDATION = 'valid'
class MTNTDatasetBuilder:
"""A data loader for the MTNT dataset."""
N_ITEMS = {DatasetSplit.TRAIN: 35_692, DatasetSplit.VALIDATION: 811}
BUFFER_SIZE_SHUFFLE = 10_000
TRANSLATION_PREFIX = 'Translate this into French:\n'
TRANSLATION_SUFFIX = '\n'
def __init__(self,
tokenizer : GriffinTokenizer,
max_seq_len: int):
"""A constructor.
Args:
tokenizer: The tokenizer to use.
max_seq_len: The size of each sequence in a given batch.
"""
self._tokenizer = tokenizer
self._base_data = {
DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
}
self._max_seq_len = max_seq_len
def _tokenize_source(self, example: tf.Tensor):
"""A tokenization function for the source."""
return self._tokenizer.tokenize_tf_op(
example, prefix=self.TRANSLATION_PREFIX, suffix=self.TRANSLATION_SUFFIX,
add_eos=False
)
def _tokenize_destination(self, example: tf.Tensor):
"""A tokenization function for the French translation."""
return self._tokenizer.tokenize_tf_op(example, add_eos=True)
def _pad_up_to_max_len(self,
input_tensor: tf.Tensor,
pad_value: int | bool,
) -> tf.Tensor:
"""Pad the given tensor up to sequence length of a batch."""
seq_len = tf.shape(input_tensor)[0]
to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
return tf.pad(
input_tensor, [[0, to_pad]], mode='CONSTANT', constant_values=pad_value,
)
def _to_training_input(
self,
src_tokens: jax.Array,
dst_tokens: jax.Array,
) -> TrainingInput:
"""Build a training input from a tuple of source and destination tokens."""
# The input sequence fed to the model is simply the concatenation of the
# source and the destination.
tokens = tf.concat([src_tokens, dst_tokens], axis=0)
# You want to prevent the model from updating based on the source (input)
# tokens. To achieve this, add a target mask to each input.
q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
mask = tf.concat([q_mask, a_mask], axis=0)
# If the output tokens sequence is smaller than the target sequence size,
# then pad it with pad tokens.
tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)
# You don't want to perform the backward on the pad tokens.
mask = self._pad_up_to_max_len(mask, False)
return TrainingInput(input_tokens=tokens, target_mask=mask)
def get_train_dataset(self, batch_size: int, num_epochs: int):
"""Build the training dataset."""
# Tokenize each sample.
ds = self._base_data[DatasetSplit.TRAIN].map(
lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst']))
)
# Convert them to training inputs.
ds = ds.map(lambda x, y: self._to_training_input(x, y))
# Remove the samples which are too long.
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
# Shuffle the dataset.
ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)
# Repeat if necessary.
ds = ds.repeat(num_epochs)
# Build batches.
ds = ds.batch(batch_size, drop_remainder=True)
return ds
def get_validation_dataset(self, batch_size: int):
"""Build the validation dataset."""
# Same as the training dataset, but no shuffling and no repetition
ds = self._base_data[DatasetSplit.VALIDATION].map(
lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst']))
)
ds = ds.map(lambda x, y: self._to_training_input(x, y))
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
Coba MTNTDatasetBuilder
dengan membuat instance GriffinTokenizer
kustom lagi, lalu terapkan pada set data MTNT, dan ambil sampel dua contoh:
dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> Example 0: input_tokens: [[ 2 49688 736 1280 6987 235292 108 12583 665 235265 108 2 6151 94975 1320 6238 235265 1 0 0] [ 2 49688 736 1280 6987 235292 108 4899 29960 11270 108282 235265 108 2 4899 79025 11270 108282 1 0] [ 2 49688 736 1280 6987 235292 108 26620 235265 108 2 26620 235265 1 0 0 0 0 0 0]] target_mask: [[False False False False False False False False False False False True True True True True True True False False] [False False False False False False False False False False False False False True True True True True True False] [False False False False False False False False False False True True True True False False False False False False]] Example 1: input_tokens: [[ 2 49688 736 1280 6987 235292 108 527 5174 1683 235336 108 2 206790 581 20726 482 2208 1654 1] [ 2 49688 736 1280 6987 235292 108 28484 235256 235336 108 2 120500 13832 1654 1 0 0 0 0] [ 2 49688 736 1280 6987 235292 108 235324 235304 2705 235265 108 2 235324 235304 19963 235265 1 0 0]] target_mask: [[False False False False False False False False False False False False True True True True True True True True] [False False False False False False False False False False False True True True True True False False False False] [False False False False False False False False False False False False True True True True True True False False]]
Mengonfigurasi model
Sebelum mulai melakukan fine-tuning model Gemma, Anda harus mengonfigurasinya.
Muat checkpoint model RecurrentGemma (Griffin) dengan metode recurrentgemma.jax.utils.load_parameters
:
params = recurrentgemma.load_parameters(CKPT_PATH, "single_device")
Untuk otomatis memuat konfigurasi yang benar dari checkpoint model RecurrentGemma, gunakan recurrentgemma.GriffinConfig.from_flax_params_or_variables
:
config = recurrentgemma.GriffinConfig.from_flax_params_or_variables(params)
Buat instance model Griffin dengan recurrentgemma.jax.Griffin
:
model = recurrentgemma.Griffin(config)
Buat sampler
dengan recurrentgemma.jax.Sampler
di atas checkpoint/bobot model RecurrentGemma dan tokenizer untuk memeriksa apakah model Anda dapat melakukan terjemahan:
sampler = recurrentgemma.Sampler(model=model, vocab=vocab, params=params)
Menyesuaikan model
Di bagian ini, Anda akan:
- Gunakan class
gemma.transformer.Transformer
untuk membuat fungsi penerusan dan kerugian maju. - Membangun vektor mask posisi dan atensi untuk token
- Bangun fungsi langkah pelatihan dengan Flax.
- Buat langkah validasi tanpa proses mundur.
- Membuat loop pelatihan.
- Menyesuaikan model Gemma.
Menentukan penerusan maju dan fungsi kerugian menggunakan recurrentgemma.jax.griffin.Griffin
. Griffin
RecurrentGemma mewarisi dari flax.linen.Module
, dan menawarkan dua metode penting:
init
: Melakukan inisialisasi parameter model.apply
: Mengeksekusi fungsi__call__
model menggunakan kumpulan parameter tertentu.
Karena Anda bekerja dengan bobot Gemma terlatih, Anda tidak perlu menggunakan fungsi init
.
def forward_and_loss_fn(
params,
*,
model: recurrentgemma.Griffin,
input_tokens: jax.Array, # Shape [B, L]
input_mask: jax.Array, # Shape [B, L]
positions: jax.Array, # Shape [B, L]
) -> jax.Array:
"""Forward pass and loss function.
Args:
params: model's input parameters.
model: Griffin model to call.
input_tokens: input tokens sequence, shape [B, L].
input_mask: tokens to ignore when computing the loss, shape [B, L].
positions: relative position of each token, shape [B, L].
Returns:
Softmax cross-entropy loss for the next-token prediction task.
"""
batch_size = input_tokens.shape[0]
# Forward pass on the input data.
# No attention cache is needed here.
# Exclude the last step as it does not appear in the targets.
logits, _ = model.apply(
{"params": params},
tokens=input_tokens[:, :-1],
segment_pos=positions[:, :-1],
cache=None,
)
# Similarly, the first token cannot be predicteds.
target_tokens = input_tokens[:, 1:]
target_mask = input_mask[:, 1:]
# Convert the target labels into one-hot encoded vectors.
one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])
# Don't update on unwanted tokens.
one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]
# Normalization factor.
norm_factor = batch_size * (jnp.sum(target_mask) + 1e-8)
# Return the negative log-likelihood loss (NLL) function.
return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) / norm_factor
Bangun fungsi train_step
yang melakukan penerusan mundur dan memperbarui parameter model sebagaimana mestinya, dengan kondisi:
jax.value_and_grad
digunakan untuk mengevaluasi fungsi kerugian dan gradien selama penerusan maju dan mundur.optax.apply_updates
digunakan untuk memperbarui parameter.
Params = Mapping[str, Any]
def get_positions(example: jax.Array, pad_id : int) -> jax.Array:
"""Builds the position vector from the given tokens."""
pad_mask = example != pad_id
positions = jnp.cumsum(pad_mask, axis=-1)
# Subtract one for all positions from the first valid one as they are
# 0-indexed
positions = positions - (positions >= 1)
return positions
@functools.partial(
jax.jit,
static_argnames=['model', 'optimizer'],
donate_argnames=['params', 'opt_state'],
)
def train_step(
model: recurrentgemma.Griffin,
params: Params,
optimizer: optax.GradientTransformation,
opt_state: optax.OptState,
pad_id: int,
example: TrainingInput,
) -> tuple[jax.Array, Params, optax.OptState]:
"""The train step.
Args:
model: The RecurrentGemma (Griffin) model.
params: The model's input parameters.
optimizer: The Optax optimizer to use.
opt_state: The input optimizer's state.
pad_id: The ID of the pad token.
example: The input batch.
Returns:
Training loss, updated parameters, updated optimizer state.
"""
positions = get_positions(example.input_tokens, pad_id)
# Forward and backward passes.
train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(
params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=positions,
)
# Update the parameters.
updates, opt_state = optimizer.update(grads, opt_state, params)
params = optax.apply_updates(params, updates)
return train_loss, params, opt_state
Bangun fungsi validation_step
tanpa penerusan mundur:
@functools.partial(jax.jit, static_argnames=['model'])
def validation_step(
model: recurrentgemma.Griffin,
params: Params,
pad_id: int,
example: TrainingInput,
) -> jax.Array:
return forward_and_loss_fn(
params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=get_positions(example.input_tokens, pad_id),
)
Tentukan loop pelatihan:
def train_loop(
model: recurrentgemma.Griffin,
params: Params,
optimizer: optax.GradientTransformation,
train_ds: Iterator[TrainingInput],
validation_ds: Iterator[TrainingInput],
num_steps: int | None = None,
eval_every_n: int = 20,
):
opt_state = jax.jit(optimizer.init)(params)
step_counter = 0
avg_loss=0
# The first round of the validation loss.
n_steps_eval = 0
eval_loss = 0
for val_example in validation_ds.as_numpy_iterator():
eval_loss += validation_step(
model, params, dataset_builder._tokenizer.pad_id, val_example
)
n_steps_eval += 1
print(f"Start, validation loss: {eval_loss/n_steps_eval}")
for train_example in train_ds:
train_loss, params, opt_state = train_step(
model=model,
params=params,
optimizer=optimizer,
opt_state=opt_state,
pad_id=dataset_builder._tokenizer.pad_id,
example=train_example,
)
step_counter += 1
avg_loss += train_loss
if step_counter % eval_every_n == 0:
eval_loss = 0
n_steps_eval = 0
val_iterator = validation_ds.as_numpy_iterator()
for val_example in val_iterator:
eval_loss += validation_step(
model,
params,
dataset_builder._tokenizer.pad_id,
val_example,
)
n_steps_eval +=1
avg_loss /= eval_every_n
eval_loss /= n_steps_eval
print(f"STEP {step_counter} training loss: {avg_loss} - eval loss: {eval_loss}")
avg_loss=0
if num_steps is not None and step_counter > num_steps:
break
return params
Di sini Anda harus memilih pengoptimal (Optax). Untuk perangkat dengan memori yang lebih kecil, sebaiknya gunakan SGD, karena memiliki footprint memori yang jauh lebih rendah. Untuk mencapai performa fine-tuning terbaik, coba Adam-W. Hyperparameter yang optimal untuk setiap pengoptimal untuk tugas tertentu dalam notebook ini diberikan dalam contoh ini untuk checkpoint 2b-it
.
def griffin_weight_decay_mask(params_like: optax.Params) -> Any:
# Don't put weight decay on the RGLRU, the embeddings and any biases
def enable_weight_decay(path: list[Any], _: Any) -> bool:
# Parameters in the LRU and embedder
path = [dict_key.key for dict_key in path]
if 'rg_lru' in path or 'embedder' in path:
return False
# All biases and scales
if path[-1] in ('b', 'scale'):
return False
return True
return jax.tree_util.tree_map_with_path(enable_weight_decay, params_like)
optimizer_choice = "sgd"
if optimizer_choice == "sgd":
optimizer = optax.sgd(learning_rate=1e-3)
num_steps = 300
elif optimizer_choice == "adamw":
optimizer = optax.adamw(
learning_rate=1e-4,
b2=0.96,
eps=1e-8,
weight_decay=0.1,
mask=griffin_weight_decay_mask,
)
num_steps = 100
else:
raise ValueError(f"Unknown optimizer: {optimizer_choice}")
Menyiapkan set data pelatihan dan validasi:
# Choose a small sequence length size, so that everything fits in memory.
num_epochs = 1
batch_size = 1
sequence_length = 32
# Make the dataset builder.
tokenizer = GriffinTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, sequence_length + 1)
# Build the training dataset.
train_ds = dataset_builder.get_train_dataset(
batch_size=batch_size,
num_epochs=num_epochs,
).as_numpy_iterator()
# Build the validation dataset, with a limited number of samples for this demo.
validation_ds = dataset_builder.get_validation_dataset(
batch_size=batch_size,
).take(50)
Mulailah menyempurnakan model RecurrentGemma (Griffin) pada sejumlah langkah terbatas (num_steps
):
trained_params = train_loop(
model=model,
params=params,
optimizer=optimizer,
train_ds=train_ds,
validation_ds=validation_ds,
num_steps=num_steps,
)
Start, validation loss: 7.894117832183838 /usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,33]), ShapedArray(bool[1,33]), ShapedArray(int32[], weak_type=True). See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation. warnings.warn("Some donated buffers were not usable:" STEP 20 training loss: 4.592616081237793 - eval loss: 2.847407102584839 STEP 40 training loss: 2.7537424564361572 - eval loss: 2.9258534908294678 STEP 60 training loss: 2.835618257522583 - eval loss: 2.4382340908050537 STEP 80 training loss: 2.6322107315063477 - eval loss: 2.3696839809417725 STEP 100 training loss: 1.8703256845474243 - eval loss: 2.355681896209717 STEP 120 training loss: 2.7280433177948 - eval loss: 2.4059958457946777 STEP 140 training loss: 2.3047447204589844 - eval loss: 2.083082914352417 STEP 160 training loss: 2.3432137966156006 - eval loss: 2.095074415206909 STEP 180 training loss: 2.1081202030181885 - eval loss: 2.006460189819336 STEP 200 training loss: 2.5359647274017334 - eval loss: 1.9667452573776245 STEP 220 training loss: 2.202195644378662 - eval loss: 1.9440618753433228 STEP 240 training loss: 2.756615400314331 - eval loss: 2.1073737144470215 STEP 260 training loss: 2.5128934383392334 - eval loss: 2.117241859436035 STEP 280 training loss: 2.73045015335083 - eval loss: 1.9159646034240723 STEP 300 training loss: 2.0918595790863037 - eval loss: 1.9742532968521118
Kerugian pelatihan dan kerugian validasi seharusnya turun dengan setiap jumlah langkah.
Untuk memastikan input Anda cocok dengan format pelatihan, jangan lupa untuk menggunakan awalan Translate this into French:\n
dan karakter baris baru di akhir. Tindakan ini akan memberi sinyal kepada model untuk memulai penerjemahan.
sampler.params = trained_params
output = sampler(
["Translate this into French:\nHello, my name is Morgane.\n"],
total_generation_steps=100,
)
print(output.text[0])
/usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,16]). See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation. warnings.warn("Some donated buffers were not usable:" Mais je m'appelle Morgane.
Pelajari lebih lanjut
- Anda dapat mempelajari lebih lanjut library
recurrentgemma
Google DeepMind di GitHub, yang berisi dokumen metode dan modul yang Anda gunakan dalam tutorial ini, sepertirecurrentgemma.jax.load_parameters
,recurrentgemma.jax.Griffin
, danrecurrentgemma.jax.Sampler
. - Library berikut memiliki situs dokumentasinya sendiri: core JAX, Flax, Chex, Optax, dan Orbax.
- Untuk dokumentasi tokenizer/detokenizer
sentencepiece
, lihat repo GitHubsentencepiece
Google. - Untuk dokumentasi
kagglehub
, lihatREADME.md
di repo GitHubkagglehub
Kaggle. - Pelajari cara menggunakan model Gemma dengan Vertex AI Google Cloud.
- Jika Anda menggunakan Google Cloud TPU (v3-8 dan yang lebih baru), pastikan Anda juga mengupdate ke paket
jax[tpu]
terbaru (!pip install -U jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
), mulai ulang runtime, dan periksa apakah versijax
danjaxlib
cocok (!pip list | grep jax
). Hal ini dapat mencegahRuntimeError
yang dapat muncul karena ketidakcocokan versijaxlib
danjax
. Untuk petunjuk penginstalan JAX selengkapnya, lihat dokumen JAX. - Lihat RecurrentGemma: Moving Past Transformers untuk Makalah Model Bahasa Terbuka yang Efisien oleh Google DeepMind.
- Baca artikel Griffin: Mencampur Pengulangan Linear Terbatas dengan Makalah Local Attention for Efficient Language Models oleh Google DeepMind untuk mempelajari lebih lanjut arsitektur model yang digunakan oleh RecurrentGemma.