Panduan pengenalan gestur untuk Python

Tugas Pengenal Gestur MediaPipe memungkinkan Anda mengenali gestur tangan secara real time, dan memberikan hasil gestur tangan yang dikenali dan penanda tangan yang terdeteksi tangan. Petunjuk ini menunjukkan cara menggunakan Pengenal Gestur dengan aplikasi Python.

Anda dapat melihat cara kerja tugas ini dengan membuka demo Untuk informasi lebih lanjut tentang kemampuan, model, dan opsi konfigurasi dari tugas ini, lihat Ringkasan.

Contoh kode

Kode contoh untuk Pengenal Gestur memberikan implementasi lengkap dari di Python untuk referensi Anda. Kode ini membantu Anda menguji tugas ini dan mendapatkan mulai membuat pengenal isyarat tangan Anda sendiri. Anda dapat melihat, menjalankan, dan edit contoh Pengenal Gestur kode hanya dengan menggunakan {i>browser<i} web.

Jika Anda mengimplementasikan Pengenal Gestur untuk Raspberry Pi, lihat Contoh Rasberi Pi aplikasi.

Penyiapan

Bagian ini menjelaskan langkah-langkah utama untuk menyiapkan lingkungan pengembangan dan kode project secara khusus untuk menggunakan Pengenal Gestur. Untuk informasi umum tentang menyiapkan lingkungan pengembangan untuk menggunakan tugas MediaPipe, termasuk persyaratan versi platform, lihat Panduan penyiapan untuk Python yang baru.

Paket

Tugas Pengenal Gestur MediaPipe memerlukan paket PyPI mediapipe. Anda dapat menginstal dan impor dependensi ini dengan kode berikut:

$ python -m pip install mediapipe

Impor

Impor class berikut untuk mengakses fungsi tugas Pengenal Gestur:

import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision

Model

Tugas Pengenal Gestur MediaPipe memerlukan paket model terlatih yang kompatibel dengan untuk melakukan tugas ini. Untuk mengetahui informasi selengkapnya tentang model terlatih yang tersedia untuk Pengenal Gestur, lihat ringkasan tugas bagian Model.

Pilih dan download model, lalu simpan di direktori lokal:

model_path = '/absolute/path/to/gesture_recognizer.task'

Tentukan jalur model dalam parameter Nama Model, seperti yang ditunjukkan di bawah ini:

base_options = BaseOptions(model_asset_path=model_path)

Membuat tugas

Tugas Pengenal Gestur MediaPipe menggunakan fungsi create_from_options untuk menyiapkan tugas Anda. Fungsi create_from_options menerima nilai untuk konfigurasi dan opsi untuk ditangani. Untuk informasi selengkapnya mengenai opsi konfigurasi, lihat Opsi konfigurasi.

Kode berikut menunjukkan cara membangun dan mengonfigurasi tugas ini.

Contoh-contoh ini juga menunjukkan variasi konstruksi tugas untuk gambar, file video, dan streaming video live.

Gambar

import mediapipe as mp

BaseOptions = mp.tasks.BaseOptions
GestureRecognizer = mp.tasks.vision.GestureRecognizer
GestureRecognizerOptions = mp.tasks.vision.GestureRecognizerOptions
VisionRunningMode = mp.tasks.vision.RunningMode

# Create a gesture recognizer instance with the image mode:
options = GestureRecognizerOptions(
    base_options=BaseOptions(model_asset_path='/path/to/model.task'),
    running_mode=VisionRunningMode.IMAGE)
with GestureRecognizer.create_from_options(options) as recognizer:
  # The detector is initialized. Use it here.
  # ...
    

Video

import mediapipe as mp

BaseOptions = mp.tasks.BaseOptions
GestureRecognizer = mp.tasks.vision.GestureRecognizer
GestureRecognizerOptions = mp.tasks.vision.GestureRecognizerOptions
VisionRunningMode = mp.tasks.vision.RunningMode

# Create a gesture recognizer instance with the video mode:
options = GestureRecognizerOptions(
    base_options=BaseOptions(model_asset_path='/path/to/model.task'),
    running_mode=VisionRunningMode.VIDEO)
with GestureRecognizer.create_from_options(options) as recognizer:
  # The detector is initialized. Use it here.
  # ...
    

Live stream

import mediapipe as mp

BaseOptions = mp.tasks.BaseOptions
GestureRecognizer = mp.tasks.vision.GestureRecognizer
GestureRecognizerOptions = mp.tasks.vision.GestureRecognizerOptions
GestureRecognizerResult = mp.tasks.vision.GestureRecognizerResult
VisionRunningMode = mp.tasks.vision.RunningMode

# Create a gesture recognizer instance with the live stream mode:
def print_result(result: GestureRecognizerResult, output_image: mp.Image, timestamp_ms: int):
    print('gesture recognition result: {}'.format(result))

options = GestureRecognizerOptions(
    base_options=BaseOptions(model_asset_path='/path/to/model.task'),
    running_mode=VisionRunningMode.LIVE_STREAM,
    result_callback=print_result)
with GestureRecognizer.create_from_options(options) as recognizer:
  # The detector is initialized. Use it here.
  # ...
    

Opsi konfigurasi

Tugas ini memiliki opsi konfigurasi berikut untuk aplikasi Python:

Nama Opsi Deskripsi Rentang Nilai Nilai Default
running_mode Menetapkan mode berjalan untuk tugas. Ada tiga moda:

IMAGE: Mode untuk input gambar tunggal.

VIDEO: Mode untuk frame video yang didekode.

LIVE_STREAM: Mode untuk live stream input besar, seperti dari kamera. Dalam mode ini, resultListener harus dipanggil untuk menyiapkan pemroses yang akan menerima hasil secara asinkron.
{IMAGE, VIDEO, LIVE_STREAM} IMAGE
num_hands Jumlah maksimum tangan yang dapat dideteksi oleh GestureRecognizer. Any integer > 0 1
min_hand_detection_confidence Skor kepercayaan minimum untuk deteksi tangan dianggap berhasil dalam model deteksi telapak tangan. 0.0 - 1.0 0.5
min_hand_presence_confidence Skor keyakinan minimum dari skor kehadiran tangan di tangan model deteksi landmark. Dalam mode Video dan mode Live stream Pengenal Gestur, jika skor keyakinan kehadiran tangan dari model penanda tangan lebih rendah ambang batas ini akan memicu model deteksi telapak tangan. Jika tidak, algoritma pelacakan tangan ringan digunakan untuk menentukan lokasi tangan untuk deteksi penanda berikutnya. 0.0 - 1.0 0.5
min_tracking_confidence Skor keyakinan minimum untuk pelacakan tangan yang akan dipertimbangkan berhasil. Ini adalah ambang batas IoU kotak pembatas antara tangan di {i>frame<i} saat ini dan {i>frame<i} terakhir. Dalam mode Video dan mode Streaming Pengenal Gestur, jika pelacakan gagal, Pengenal Gestur akan memicu tangan deteksi. Jika tidak, deteksi tangan akan dilewati. 0.0 - 1.0 0.5
canned_gestures_classifier_options Opsi untuk mengonfigurasi perilaku pengklasifikasi gestur terekam. Template pesan adalah ["None", "Closed_Fist", "Open_Palm", "Pointing_Up", "Thumb_Down", "Thumb_Up", "Victory", "ILoveYou"]
  • Lokal nama tampilan: lokal yang akan digunakan untuk nama tampilan yang ditentukan melalui Metadata Model TFLite, jika ada.
  • Hasil maksimum: jumlah maksimum hasil klasifikasi dengan skor tertinggi yang akan ditampilkan. Jika < 0, semua hasil yang tersedia akan ditampilkan.
  • Ambang batas skor: skor di bawah hasil yang ditolak. Jika ditetapkan ke 0, semua hasil yang tersedia akan ditampilkan.
  • Daftar kategori yang diizinkan: daftar nama kategori yang diizinkan. Jika tidak kosong, hasil klasifikasi yang kategorinya tidak ada dalam kumpulan ini akan difilter. Tidak dapat muncul bersamaan dengan daftar tolak.
  • Daftar tolak kategori: daftar tolak nama kategori. Jika tidak kosong, hasil klasifikasi yang kategorinya ada dalam kumpulan ini akan difilter. Tidak dapat muncul bersamaan dengan daftar yang diizinkan.
    • Lokal nama tampilan: any string
    • Hasil maks: any integer
    • Nilai minimum skor: 0.0-1.0
    • Daftar kategori yang diizinkan: vector of strings
    • Daftar tolak kategori: vector of strings
    • Lokal nama tampilan: "en"
    • Hasil maks: -1
    • Nilai minimum skor: 0
    • Daftar kategori yang diizinkan: kosong
    • Daftar tolak kategori: kosong
    custom_gestures_classifier_options Opsi untuk mengonfigurasi perilaku pengklasifikasi gestur kustom.
  • Lokal nama tampilan: lokal yang akan digunakan untuk nama tampilan yang ditentukan melalui Metadata Model TFLite, jika ada.
  • Hasil maksimum: jumlah maksimum hasil klasifikasi dengan skor tertinggi yang akan ditampilkan. Jika < 0, semua hasil yang tersedia akan ditampilkan.
  • Ambang batas skor: skor di bawah hasil yang ditolak. Jika ditetapkan ke 0, semua hasil yang tersedia akan ditampilkan.
  • Daftar kategori yang diizinkan: daftar nama kategori yang diizinkan. Jika tidak kosong, hasil klasifikasi yang kategorinya tidak ada dalam kumpulan ini akan difilter. Tidak dapat muncul bersamaan dengan daftar tolak.
  • Daftar tolak kategori: daftar tolak nama kategori. Jika tidak kosong, hasil klasifikasi yang kategorinya ada dalam kumpulan ini akan difilter. Tidak dapat muncul bersamaan dengan daftar yang diizinkan.
    • Lokal nama tampilan: any string
    • Hasil maks: any integer
    • Nilai minimum skor: 0.0-1.0
    • Daftar kategori yang diizinkan: vector of strings
    • Daftar tolak kategori: vector of strings
    • Lokal nama tampilan: "en"
    • Hasil maks: -1
    • Nilai minimum skor: 0
    • Daftar kategori yang diizinkan: kosong
    • Daftar tolak kategori: kosong
    result_callback Menyetel pemroses hasil untuk menerima hasil klasifikasi secara asinkron saat pengenal gestur berada dalam mode live stream. Hanya dapat digunakan saat mode lari disetel ke LIVE_STREAM ResultListener T/A T/A

    Menyiapkan data

    Siapkan input Anda sebagai file gambar atau array numpy, lalu konversi menjadi Objek mediapipe.Image. Jika input Anda adalah file video atau live stream dari Webcam, Anda dapat menggunakan perpustakaan eksternal seperti OpenCV untuk memuat frame input sebagai numpy .

    Gambar

    import mediapipe as mp
    
    # Load the input image from an image file.
    mp_image = mp.Image.create_from_file('/path/to/image')
    
    # Load the input image from a numpy array.
    mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_image)
        

    Video

    import mediapipe as mp
    
    # Use OpenCV’s VideoCapture to load the input video.
    
    # Load the frame rate of the video using OpenCV’s CV_CAP_PROP_FPS
    # You’ll need it to calculate the timestamp for each frame.
    
    # Loop through each frame in the video using VideoCapture#read()
    
    # Convert the frame received from OpenCV to a MediaPipe’s Image object.
    mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_frame_from_opencv)
        

    Live stream

    import mediapipe as mp
    
    # Use OpenCV’s VideoCapture to start capturing from the webcam.
    
    # Create a loop to read the latest frame from the camera using VideoCapture#read()
    
    # Convert the frame received from OpenCV to a MediaPipe’s Image object.
    mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_frame_from_opencv)
        

    Menjalankan tugas

    Pengenal Gestur menggunakan pengenal, kenal_for_video, dan kenali fungsi untuk memicu inferensi. Untuk pengenalan {i>gesture, <i}melibatkan pra-pemrosesan data input, mendeteksi tangan dalam gambar, mendeteksi tangan {i>landmark<i}, dan mengenali {i>gesture <i}tangan dari {i>landmark<i}.

    Kode berikut menunjukkan cara mengeksekusi pemrosesan dengan model tugas.

    Gambar

    # Perform gesture recognition on the provided single image.
    # The gesture recognizer must be created with the image mode.
    gesture_recognition_result = recognizer.recognize(mp_image)
        

    Video

    # Perform gesture recognition on the provided single image.
    # The gesture recognizer must be created with the video mode.
    gesture_recognition_result = recognizer.recognize_for_video(mp_image, frame_timestamp_ms)
        

    Live stream

    # Send live image data to perform gesture recognition.
    # The results are accessible via the `result_callback` provided in
    # the `GestureRecognizerOptions` object.
    # The gesture recognizer must be created with the live stream mode.
    recognizer.recognize_async(mp_image, frame_timestamp_ms)
        

    Perhatikan hal berikut:

    • Saat dalam mode video atau mode live stream, Anda juga harus berikan stempel waktu {i>frame<i} input ke tugas Pengenal Gestur.
    • Saat dijalankan dalam model gambar atau video, tugas Pengenal Gestur akan memblokir utas saat ini hingga selesai memproses gambar input atau {i>frame<i}.
    • Saat berjalan dalam mode live stream, tugas Pengenal Gestur tidak akan diblokir thread saat ini tetapi langsung kembali. Fungsi ini akan memanggil hasilnya pemroses dengan hasil pengenalan setiap kali ia selesai memproses {i>frame<i} input. Jika fungsi pengenalan dipanggil saat Pengenal Gestur tugas sedang sibuk memproses frame lain, tugas akan mengabaikan input baru {i>frame<i}.

    Untuk contoh lengkap menjalankan Pengenal Gestur pada gambar, lihat kode contoh untuk mengetahui detailnya.

    Menangani dan menampilkan hasil

    Pengenal Gestur menghasilkan objek hasil deteksi gestur untuk setiap pengenalan objek. Objek hasil berisi penanda tangan dalam koordinat gambar, penanda tangan dalam koordinat dunia, tangan kiri(tangan kiri/kanan), dan tangan kategori {i>gesture <i}dari tangan yang terdeteksi.

    Berikut ini contoh data output dari tugas ini:

    GestureRecognizerResult yang dihasilkan berisi empat komponen, dan setiap komponen adalah array, dengan setiap elemen berisi hasil yang terdeteksi dari satu tangan yang terdeteksi.

    • Kecenderungan penggunaan tangan

      Tangan yang Dominan menunjukkan apakah tangan yang terdeteksi adalah tangan kiri atau kanan.

    • Gestur

      Kategori gestur yang dikenali dari tangan yang terdeteksi.

    • Tempat terkenal

      Ada 21 penanda tangan, masing-masing terdiri dari koordinat x, y, dan z. Tujuan Koordinat x dan y dinormalkan ke [0,0, 1,0] berdasarkan lebar gambar dan tinggi masing-masing. Koordinat z mewakili kedalaman tempat terkenal, dengan kedalaman di pergelangan tangan menjadi asalnya. Semakin kecil nilainya, maka penanda ke kamera. Besarnya z menggunakan skala yang kurang lebih sama dengan x.

    • Landmark Dunia

      Landmark 21 tangan juga ditampilkan dalam koordinat dunia. Setiap tempat terkenal terdiri dari x, y, dan z, yang mewakili koordinat 3D dunia nyata di meter dengan titik asal di pusat geometris tangan.

    GestureRecognizerResult:
      Handedness:
        Categories #0:
          index        : 0
          score        : 0.98396
          categoryName : Left
      Gestures:
        Categories #0:
          score        : 0.76893
          categoryName : Thumb_Up
      Landmarks:
        Landmark #0:
          x            : 0.638852
          y            : 0.671197
          z            : -3.41E-7
        Landmark #1:
          x            : 0.634599
          y            : 0.536441
          z            : -0.06984
        ... (21 landmarks for a hand)
      WorldLandmarks:
        Landmark #0:
          x            : 0.067485
          y            : 0.031084
          z            : 0.055223
        Landmark #1:
          x            : 0.063209
          y            : -0.00382
          z            : 0.020920
        ... (21 world landmarks for a hand)
    

    Gambar berikut menunjukkan visualisasi output tugas:

    Kode contoh Pengenal Gestur menunjukkan cara menampilkan pengenalan hasil yang ditampilkan dari tugas, lihat kode contoh untuk mengetahui detailnya.