Zrozumienie i liczenie tokenów

Gemini i inne modele generatywnej AI przetwarzają dane wejściowe i wyjściowe w jednostkach zwanych tokenami.

W przypadku modeli Gemini token odpowiada około 4 znakom. 100 tokenów to około 60–80 słów w języku angielskim.

Informacje o tokenach

Tokeny mogą być pojedynczymi znakami, np. z, lub całymi słowami, np. cat. Długie słowa są dzielone na kilka tokenów. Zbiór wszystkich tokenów używanych przez model nazywa się słownikiem, a proces dzielenia tekstu na tokeny to tokenizacja.

Gdy płatności są włączone, koszt wywołania interfejsu Gemini API jest częściowo określany przez liczbę tokenów wejściowych i wyjściowych, więc wiedza o tym, jak je zliczać, może być przydatna.

Możesz wypróbować zliczanie tokenów w naszym Colabie.

Wyświetl na ai.google.dev Wypróbuj notatnik Colab Wyświetl notatnik w GitHubie

Liczba tokenów

Wszystkie dane wejściowe i wyjściowe interfejsu Gemini API są tokenizowane, w tym tekst, pliki obrazów i inne formaty nietekstowe.

Tokeny możesz zliczać na te sposoby:

  • Wywołaj funkcję count_tokens, podając dane wejściowe żądania.
     Zwraca łączną liczbę tokenów tylko w danych wejściowych. Możesz wykonać to wywołanie przed wysłaniem danych wejściowych do modelu, aby sprawdzić rozmiar żądań.

  • Użyj atrybutu usage_metadata w obiekcie response po wywołaniu funkcji generate_content.
    Zwraca łączną liczbę tokenów zarówno w danych wejściowych, jak i w danych wyjściowych: total_token_count.
     Zwraca też oddzielnie liczbę tokenów wejściowych i wyjściowych: prompt_token_count (tokeny wejściowe) i candidates_token_count(tokeny wyjściowe).

    Jeśli używasz modelu myślącego, tokeny użyte podczas procesu myślenia są zwracane w thoughts_token_count. Jeśli używasz pamięci podręcznej kontekstu, liczba tokenów w pamięci podręcznej będzie podana w cached_content_token_count.

Zliczanie tokenów tekstowych

Jeśli wywołasz funkcję count_tokens, podając tylko tekst, zwróci ona liczbę tokenów tekstu tylko w danych wejściowych (total_tokens). Możesz wywołać tę funkcję przed wywołaniem funkcji generate_content, aby sprawdzić rozmiar żądań.

Inną opcją jest wywołanie generate_content, a następnie użycie atrybutu usage_metadata w obiekcie response, aby uzyskać te informacje:

  • Osobne liczby tokenów dla danych wejściowych (prompt_token_count), treści w pamięci podręcznej (cached_content_token_count) i danych wyjściowych (candidates_token_count).
  • Liczba tokenów w procesie myślowym (thoughts_token_count)
  • Łączna liczba tokenów zarówno wejściowych, jak i wyjściowych (total_token_count)

Python

from google import genai

client = genai.Client()
prompt = "The quick brown fox jumps over the lazy dog."

total_tokens = client.models.count_tokens(
    model="gemini-3-flash-preview", contents=prompt
)
print("total_tokens: ", total_tokens)

response = client.models.generate_content(
    model="gemini-3-flash-preview", contents=prompt
)

print(response.usage_metadata)

JavaScript

import { GoogleGenAI } from '@google/genai';

const ai = new GoogleGenAI({});
const prompt = "The quick brown fox jumps over the lazy dog.";

async function main() {
  const countTokensResponse = await ai.models.countTokens({
    model: "gemini-3-flash-preview",
    contents: prompt,
  });
  console.log(countTokensResponse.totalTokens);

  const generateResponse = await ai.models.generateContent({
    model: "gemini-3-flash-preview",
    contents: prompt,
  });
  console.log(generateResponse.usageMetadata);
}

await main();

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)

// Convert prompt to a slice of *genai.Content using the helper.
contents := []*genai.Content{
  genai.NewContentFromText(prompt, genai.RoleUser),
}
countResp, err := client.Models.CountTokens(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  return err
}
fmt.Println("total_tokens:", countResp.TotalTokens)

response, err := client.Models.GenerateContent(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
usageMetadata, err := json.MarshalIndent(response.UsageMetadata, "", "  ")
if err != nil {
  log.Fatal(err)
}
fmt.Println(string(usageMetadata))
    ```

Zliczanie tokenów w przypadku promptów wieloetapowych (czat)

Jeśli wywołasz count_tokens z historią czatu, zwróci ona łączną liczbę tokenów tekstu z każdej roli na czacie (total_tokens).

Inną opcją jest wywołanie send_message, a następnie użycie atrybutu usage_metadata w obiekcie response, aby uzyskać te informacje:

  • Osobne liczby tokenów dla danych wejściowych (prompt_token_count), treści w pamięci podręcznej (cached_content_token_count) i danych wyjściowych (candidates_token_count).
  • Liczba tokenów w procesie myślowym (thoughts_token_count)
  • Łączna liczba tokenów zarówno wejściowych, jak i wyjściowych (total_token_count)

Aby dowiedzieć się, jak duża będzie kolejna tura rozmowy, musisz dodać ją do historii, gdy wywołujesz funkcję count_tokens.

Python

from google import genai
from google.genai import types

client = genai.Client()

chat = client.chats.create(
    model="gemini-3-flash-preview",
    history=[
        types.Content(
            role="user", parts=[types.Part(text="Hi my name is Bob")]
        ),
        types.Content(role="model", parts=[types.Part(text="Hi Bob!")]),
    ],
)

print(
    client.models.count_tokens(
        model="gemini-3-flash-preview", contents=chat.get_history()
    )
)

response = chat.send_message(
    message="In one sentence, explain how a computer works to a young child."
)
print(response.usage_metadata)

extra = types.UserContent(
    parts=[
        types.Part(
            text="What is the meaning of life?",
        )
    ]
)
history = [*chat.get_history(), extra]
print(client.models.count_tokens(model="gemini-3-flash-preview", contents=history))

JavaScript

import { GoogleGenAI } from '@google/genai';

const ai = new GoogleGenAI({});

async function main() {
  const history = [
    { role: "user", parts: [{ text: "Hi my name is Bob" }] },
    { role: "model", parts: [{ text: "Hi Bob!" }] },
  ];
  const chat = ai.chats.create({
    model: "gemini-3-flash-preview",
    history: history,
  });

  const countTokensResponse = await ai.models.countTokens({
    model: "gemini-3-flash-preview",
    contents: chat.getHistory(),
  });
  console.log(countTokensResponse.totalTokens);

  const chatResponse = await chat.sendMessage({
    message: "In one sentence, explain how a computer works to a young child.",
  });
  console.log(chatResponse.usageMetadata);

  const extraMessage = {
    role: "user",
    parts: [{ text: "What is the meaning of life?" }],
  };
  const combinedHistory = [...chat.getHistory(), extraMessage];
  const combinedCountTokensResponse = await ai.models.countTokens({
    model: "gemini-3-flash-preview",
    contents: combinedHistory,
  });
  console.log(
    "Combined history token count:",
    combinedCountTokensResponse.totalTokens,
  );
}

await main();

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)

history := []*genai.Content{
  {Role: genai.RoleUser, Parts: []*genai.Part({Text: "Hi my name is Bob"})},
  {Role: genai.RoleModel, Parts: []*genai.Part({Text: "Hi Bob!"})},
}
chat, err := client.Chats.Create(ctx, "gemini-3-flash-preview", nil, history)
if err != nil {
  log.Fatal(err)
}

firstTokenResp, err := client.Models.CountTokens(ctx, "gemini-3-flash-preview", chat.History(false), nil)
if err != nil {
  log.Fatal(err)
}
fmt.Println(firstTokenResp.TotalTokens)

resp, err := chat.SendMessage(ctx, genai.NewPartFromText("In one sentence, explain how a computer works to a young child."))
if err != nil {
  log.Fatal(err)
}
fmt.Printf("%#v\n", resp.UsageMetadata)

extra := genai.NewContentFromText("What is the meaning of life?", genai.RoleUser)
hist := chat.History(false)
hist = append(hist, extra)

secondTokenResp, err := client.Models.CountTokens(ctx, "gemini-3-flash-preview", hist, nil)
if err != nil {
  log.Fatal(err)
}
fmt.Println(secondTokenResp.TotalTokens)

Zliczanie tokenów multimodalnych

Wszystkie dane wejściowe do Gemini API są tokenizowane, w tym tekst, pliki graficzne i inne formaty nietekstowe. Podczas przetwarzania danych wejściowych multimodalnych przez interfejs Gemini API weź pod uwagę te kluczowe informacje o tokenizacji:

  • Dane wejściowe w postaci obrazów, których oba wymiary są mniejsze lub równe 384 pikselom, są liczone jako 258 tokenów. Obrazy większe w jednym lub obu wymiarach są przycinane i skalowane w razie potrzeby do rozmiaru 768 x 768 pikseli. Każdy taki fragment jest liczony jako 258 tokenów.

  • Pliki wideo i audio są konwertowane na tokeny według tych stałych stawek: wideo – 263 tokeny na sekundę, audio – 32 tokeny na sekundę.

Rozdzielczości multimediów

Modele Gemini 3 Pro i 3 Flash w wersji podglądowej wprowadzają szczegółową kontrolę nad przetwarzaniem obrazu multimodalnego za pomocą parametru media_resolution. Parametr media_resolution określa maksymalną liczbę tokenów przypisanych do każdego obrazu wejściowego lub klatki filmu. Wyższe rozdzielczości zwiększają zdolność modelu do odczytywania drobnego tekstu lub rozpoznawania małych szczegółów, ale zwiększają zużycie tokenów i opóźnienie.

Więcej informacji o tym parametrze i jego wpływie na obliczenia tokenów znajdziesz w przewodniku rozdzielczość multimediów.

Pliki graficzne

Jeśli wywołasz funkcję count_tokens z tekstem i obrazem, zwróci ona łączną liczbę tokenów tekstu i obrazu tylko w danych wejściowych (total_tokens). Możesz wywołać tę funkcję przed wywołaniem funkcji generate_content, aby sprawdzić rozmiar żądań. Opcjonalnie możesz też wywołać funkcję count_tokens osobno w przypadku tekstu i pliku.

Inną opcją jest wywołanie generate_content, a następnie użycie atrybutu usage_metadata w obiekcie response, aby uzyskać te informacje:

  • Osobne liczby tokenów dla danych wejściowych (prompt_token_count), treści w pamięci podręcznej (cached_content_token_count) i danych wyjściowych (candidates_token_count).
  • Liczba tokenów w procesie myślowym (thoughts_token_count)
  • Łączna liczba tokenów zarówno wejściowych, jak i wyjściowych (total_token_count)

Przykład, który korzysta z przesłanego obrazu z interfejsu File API:

Python

from google import genai

client = genai.Client()
prompt = "Tell me about this image"
your_image_file = client.files.upload(file=media / "organ.jpg")

print(
    client.models.count_tokens(
        model="gemini-3-flash-preview", contents=[prompt, your_image_file]
    )
)

response = client.models.generate_content(
    model="gemini-3-flash-preview", contents=[prompt, your_image_file]
)
print(response.usage_metadata)

JavaScript

import { GoogleGenAI } from '@google/genai';

const ai = new GoogleGenAI({});
const prompt = "Tell me about this image";

async function main() {
  const organ = await ai.files.upload({
    file: path.join(media, "organ.jpg"),
    config: { mimeType: "image/jpeg" },
  });

  const countTokensResponse = await ai.models.countTokens({
    model: "gemini-3-flash-preview",
    contents: createUserContent([
      prompt,
      createPartFromUri(organ.uri, organ.mimeType),
    ]),
  });
  console.log(countTokensResponse.totalTokens);

  const generateResponse = await ai.models.generateContent({
    model: "gemini-3-flash-preview",
    contents: createUserContent([
      prompt,
      createPartFromUri(organ.uri, organ.mimeType),
    ]),
  });
  console.log(generateResponse.usageMetadata);
}

await main();

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)

file, err := client.Files.UploadFromPath(
  ctx, 
  filepath.Join(getMedia(), "organ.jpg"), 
  &genai.UploadFileConfig{
    MIMEType : "image/jpeg",
  },
)
if err != nil {
  log.Fatal(err)
}
parts := []*genai.Part{
  genai.NewPartFromText("Tell me about this image"),
  genai.NewPartFromURI(file.URI, file.MIMEType),
}
contents := []*genai.Content{
  genai.NewContentFromParts(parts, genai.RoleUser),
}

tokenResp, err := client.Models.CountTokens(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
fmt.Println("Multimodal image token count:", tokenResp.TotalTokens)

response, err := client.Models.GenerateContent(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
usageMetadata, err := json.MarshalIndent(response.UsageMetadata, "", "  ")
if err != nil {
  log.Fatal(err)
}
fmt.Println(string(usageMetadata))

Przykład, w którym obraz jest podany jako dane w treści:

Python

from google import genai
import PIL.Image

client = genai.Client()
prompt = "Tell me about this image"
your_image_file = PIL.Image.open(media / "organ.jpg")

print(
    client.models.count_tokens(
        model="gemini-3-flash-preview", contents=[prompt, your_image_file]
    )
)

response = client.models.generate_content(
    model="gemini-3-flash-preview", contents=[prompt, your_image_file]
)
print(response.usage_metadata)

JavaScript

import { GoogleGenAI } from '@google/genai';

const ai = new GoogleGenAI({});
const prompt = "Tell me about this image";
const imageBuffer = fs.readFileSync(path.join(media, "organ.jpg"));

const imageBase64 = imageBuffer.toString("base64");

const contents = createUserContent([
  prompt,
  createPartFromBase64(imageBase64, "image/jpeg"),
]);

async function main() {
  const countTokensResponse = await ai.models.countTokens({
    model: "gemini-3-flash-preview",
    contents: contents,
  });
  console.log(countTokensResponse.totalTokens);

  const generateResponse = await ai.models.generateContent({
    model: "gemini-3-flash-preview",
    contents: contents,
  });
  console.log(generateResponse.usageMetadata);
}

await main();

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)

imageBytes, err := os.ReadFile("organ.jpg")
if err != nil {
    log.Fatalf("Failed to read image file: %v", err)
}
parts := []*genai.Part{
  genai.NewPartFromText("Tell me about this image"),
  {
        InlineData: &genai.Blob{
              MIMEType: "image/jpeg",
              Data:     imageBytes,
        },
  },
}
contents := []*genai.Content{
  genai.NewContentFromParts(parts, genai.RoleUser),
}

tokenResp, err := client.Models.CountTokens(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
fmt.Println("Multimodal image token count:", tokenResp.TotalTokens)

response, err := client.Models.GenerateContent(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
usageMetadata, err := json.MarshalIndent(response.UsageMetadata, "", "  ")
if err != nil {
  log.Fatal(err)
}
fmt.Println(string(usageMetadata))

pliki wideo lub audio,

Dźwięk i obraz są przeliczane na tokeny według tych stałych stawek:

  • Wideo: 263 tokeny na sekundę
  • Audio: 32 tokeny na sekundę

Jeśli wywołasz funkcję count_tokens z tekstowym i wideo/audio danymi wejściowymi, zwróci ona łączną liczbę tokenów tekstu i pliku wideo/audio tylko w danych wejściowych (total_tokens). Możesz wywołać tę funkcję przed wywołaniem funkcji generate_content, aby sprawdzić rozmiar żądań. Możesz też opcjonalnie wywołać funkcję count_tokens osobno w przypadku tekstu i pliku.

Inną opcją jest wywołanie generate_content, a następnie użycie atrybutu usage_metadata w obiekcie response, aby uzyskać te informacje:

  • Osobne liczby tokenów dla danych wejściowych (prompt_token_count), treści w pamięci podręcznej (cached_content_token_count) i danych wyjściowych (candidates_token_count).
  • Liczba tokenów w procesie myślowym (thoughts_token_count)
  • Łączna liczba tokenów zarówno wejściowych, jak i wyjściowych (total_token_count).

Python

from google import genai
import time

client = genai.Client()
prompt = "Tell me about this video"
your_file = client.files.upload(file=media / "Big_Buck_Bunny.mp4")

while not your_file.state or your_file.state.name != "ACTIVE":
    print("Processing video...")
    print("File state:", your_file.state)
    time.sleep(5)
    your_file = client.files.get(name=your_file.name)

print(
    client.models.count_tokens(
        model="gemini-3-flash-preview", contents=[prompt, your_file]
    )
)

response = client.models.generate_content(
    model="gemini-3-flash-preview", contents=[prompt, your_file]
)
print(response.usage_metadata)

JavaScript

import { GoogleGenAI } from '@google/genai';

const ai = new GoogleGenAI({});
const prompt = "Tell me about this video";

async function main() {
  let videoFile = await ai.files.upload({
    file: path.join(media, "Big_Buck_Bunny.mp4"),
    config: { mimeType: "video/mp4" },
  });

  while (!videoFile.state || videoFile.state.toString() !== "ACTIVE") {
    console.log("Processing video...");
    console.log("File state: ", videoFile.state);
    await sleep(5000);
    videoFile = await ai.files.get({ name: videoFile.name });
  }

  const countTokensResponse = await ai.models.countTokens({
    model: "gemini-3-flash-preview",
    contents: createUserContent([
      prompt,
      createPartFromUri(videoFile.uri, videoFile.mimeType),
    ]),
  });
  console.log(countTokensResponse.totalTokens);

  const generateResponse = await ai.models.generateContent({
    model: "gemini-3-flash-preview",
    contents: createUserContent([
      prompt,
      createPartFromUri(videoFile.uri, videoFile.mimeType),
    ]),
  });
  console.log(generateResponse.usageMetadata);
}

await main();

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)

file, err := client.Files.UploadFromPath(
  ctx,
  filepath.Join(getMedia(), "Big_Buck_Bunny.mp4"),
  &genai.UploadFileConfig{
    MIMEType : "video/mp4",
  },
)
if err != nil {
  log.Fatal(err)
}

for file.State == genai.FileStateUnspecified || file.State != genai.FileStateActive {
  fmt.Println("Processing video...")
  fmt.Println("File state:", file.State)
  time.Sleep(5 * time.Second)

  file, err = client.Files.Get(ctx, file.Name, nil)
  if err != nil {
    log.Fatal(err)
  }
}

parts := []*genai.Part{
  genai.NewPartFromText("Tell me about this video"),
  genai.NewPartFromURI(file.URI, file.MIMEType),
}
contents := []*genai.Content{
  genai.NewContentFromParts(parts, genai.RoleUser),
}

tokenResp, err := client.Models.CountTokens(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
fmt.Println("Multimodal video/audio token count:", tokenResp.TotalTokens)
response, err := client.Models.GenerateContent(ctx, "gemini-3-flash-preview", contents, nil)
if err != nil {
  log.Fatal(err)
}
usageMetadata, err := json.MarshalIndent(response.UsageMetadata, "", "  ")
if err != nil {
  log.Fatal(err)
}
fmt.Println(string(usageMetadata))

Okna kontekstu

Modele dostępne w Gemini API mają okna kontekstu mierzone w tokenach. Okno kontekstowe określa, ile danych wejściowych możesz podać i ile danych wyjściowych może wygenerować model. Rozmiar okna kontekstu możesz określić, wywołując punkt końcowy models.get lub sprawdzając dokumentację modeli.

Python

from google import genai

client = genai.Client()
model_info = client.models.get(model="gemini-3-flash-preview")
print(f"{model_info.input_token_limit=}")
print(f"{model_info.output_token_limit=}")

JavaScript

import { GoogleGenAI } from '@google/genai';

const ai = new GoogleGenAI({});

async function main() {
  const modelInfo = await ai.models.get({model: 'gemini-3-flash-preview'});
  console.log(modelInfo.inputTokenLimit);
  console.log(modelInfo.outputTokenLimit);
}

await main();

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
  log.Fatal(err)
}
modelInfo, err := client.ModelInfo(ctx, "models/gemini-3-flash-preview")
if err != nil {
  log.Fatal(err)
}
fmt.Println("input token limit:", modelInfo.InputTokenLimit)
fmt.Println("output token limit:", modelInfo.OutputTokenLimit)