API Interactions

L'API Interactions est une interface unifiée permettant d'interagir avec les modèles et les agents Gemini. Il simplifie la gestion des états, l'orchestration des outils et les tâches de longue durée. Pour obtenir une vue complète du schéma de l'API, consultez la documentation de référence de l'API.

L'exemple suivant montre comment appeler l'API Interactions avec une requête textuelle.

Python

from google import genai

client = genai.Client()

interaction =  client.interactions.create(
    model="gemini-3-pro-preview",
    input="Tell me a short joke about programming."
)

print(interaction.outputs[-1].text)

JavaScript

import { GoogleGenAI } from '@google/genai';

const client = new GoogleGenAI({});

const interaction =  await client.interactions.create({
    model: 'gemini-3-pro-preview',
    input: 'Tell me a short joke about programming.',
});

console.log(interaction.outputs[interaction.outputs.length - 1].text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-3-pro-preview",
    "input": "Tell me a short joke about programming."
}'

Interactions de base

L'API Interactions est disponible via nos SDK existants. Le moyen le plus simple d'interagir avec le modèle consiste à fournir un prompt textuel. input peut être une chaîne, une liste contenant des objets de contenu ou une liste de tours avec des rôles et des objets de contenu.

Python

from google import genai

client = genai.Client()

interaction =  client.interactions.create(
    model="gemini-2.5-flash",
    input="Tell me a short joke about programming."
)

print(interaction.outputs[-1].text)

JavaScript

import { GoogleGenAI } from '@google/genai';

const client = new GoogleGenAI({});

const interaction =  await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: 'Tell me a short joke about programming.',
});

console.log(interaction.outputs[interaction.outputs.length - 1].text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": "Tell me a short joke about programming."
}'

Conversation

Vous pouvez créer des conversations multitours de deux manières :

  • Avec état, en faisant référence à une interaction précédente
  • Sans état, en fournissant l'intégralité de l'historique des conversations

Conversation avec état

Transmettez le id de l'interaction précédente au paramètre previous_interaction_id pour poursuivre une conversation.

Python

from google import genai

client = genai.Client()

# 1. First turn
interaction1 = client.interactions.create(
    model="gemini-2.5-flash",
    input="Hi, my name is Phil."
)
print(f"Model: {interaction1.outputs[-1].text}")

# 2. Second turn (passing previous_interaction_id)
interaction2 = client.interactions.create(
    model="gemini-2.5-flash",
    input="What is my name?",
    previous_interaction_id=interaction1.id
)
print(f"Model: {interaction2.outputs[-1].text}")

JavaScript

import { GoogleGenAI } from '@google/genai';

const client = new GoogleGenAI({});

// 1. First turn
const interaction1 = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: 'Hi, my name is Phil.'
});
console.log(`Model: ${interaction1.outputs[interaction1.outputs.length - 1].text}`);

// 2. Second turn (passing previous_interaction_id)
const interaction2 = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: 'What is my name?',
    previous_interaction_id: interaction1.id
});
console.log(`Model: ${interaction2.outputs[interaction2.outputs.length - 1].text}`);

REST

# 1. First turn
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": "Hi, my name is Phil."
}'

# 2. Second turn (Replace INTERACTION_ID with the ID from the previous interaction)
# curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
# -H "Content-Type: application/json" \
# -H "x-goog-api-key: $GEMINI_API_KEY" \
# -d '{
#     "model": "gemini-2.5-flash",
#     "input": "What is my name?",
#     "previous_interaction_id": "INTERACTION_ID"
# }'

Récupérer les interactions avec état précédentes

Utiliser l'interaction id pour récupérer les tours de conversation précédents.

Python

previous_interaction = client.interactions.get("<YOUR_INTERACTION_ID>")

print(previous_interaction)

JavaScript

const previous_interaction = await client.interactions.get("<YOUR_INTERACTION_ID>");
console.log(previous_interaction);

REST

curl -X GET "https://generativelanguage.googleapis.com/v1beta/interactions/<YOUR_INTERACTION_ID>" \
-H "x-goog-api-key: $GEMINI_API_KEY"

Conversation sans état

Vous pouvez gérer manuellement l'historique des conversations côté client.

Python

from google import genai

client = genai.Client()

conversation_history = [
    {
        "role": "user",
        "content": "What are the three largest cities in Spain?"
    }
]

interaction1 = client.interactions.create(
    model="gemini-2.5-flash",
    input=conversation_history
)

print(f"Model: {interaction1.outputs[-1].text}")

conversation_history.append({"role": "model", "content": interaction1.outputs})
conversation_history.append({
    "role": "user", 
    "content": "What is the most famous landmark in the second one?"
})

interaction2 = client.interactions.create(
    model="gemini-2.5-flash",
    input=conversation_history
)

print(f"Model: {interaction2.outputs[-1].text}")

JavaScript

import { GoogleGenAI } from '@google/genai';

const client = new GoogleGenAI({});

const conversationHistory = [
    {
        role: 'user',
        content: "What are the three largest cities in Spain?"
    }
];

const interaction1 = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: conversationHistory
});

console.log(`Model: ${interaction1.outputs[interaction1.outputs.length - 1].text}`);

conversationHistory.push({ role: 'model', content: interaction1.outputs });
conversationHistory.push({
    role: 'user',
    content: "What is the most famous landmark in the second one?"
});

const interaction2 = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: conversationHistory
});

console.log(`Model: ${interaction2.outputs[interaction2.outputs.length - 1].text}`);

REST

 curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
 -H "Content-Type: application/json" \
 -H "x-goog-api-key: $GEMINI_API_KEY" \
 -d '{
    "model": "gemini-2.5-flash",
    "input": [
        {
            "role": "user",
            "content": "What are the three largest cities in Spain?"
        },
        {
            "role": "model",
            "content": "The three largest cities in Spain are Madrid, Barcelona, and Valencia."
        },
        {
            "role": "user",
            "content": "What is the most famous landmark in the second one?"
        }
    ]
}'

Fonctionnalités multimodales

Vous pouvez utiliser l'API Interactions pour des cas d'utilisation multimodaux tels que la compréhension d'images ou la génération de vidéos.

Compréhension multimodale

Vous pouvez fournir des données multimodales sous forme de données encodées en base64 intégrées ou à l'aide de l'API Files pour les fichiers plus volumineux.

Compréhension des images

Python

import base64
from pathlib import Path
from google import genai

client = genai.Client()

# Read and encode the image
with open(Path(__file__).parent / "car.png", "rb") as f:
    base64_image = base64.b64encode(f.read()).decode('utf-8')

interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input=[
        {"type": "text", "text": "Describe the image."},
        {"type": "image", "data": base64_image, "mime_type": "image/png"}
    ]
)

print(interaction.outputs[-1].text)

JavaScript

import { GoogleGenAI } from '@google/genai';
import * as fs from 'fs';

const client = new GoogleGenAI({});

const base64Image = fs.readFileSync('car.png', { encoding: 'base64' });

const interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: [
        { type: 'text', text: 'Describe the image.' },
        { type: 'image', data: base64Image, mime_type: 'image/png' }
    ]
});

console.log(interaction.outputs[interaction.outputs.length - 1].text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": [
        {"type": "text", "text": "Describe the image."},
        {"type": "image", "data": "'"$(base64 -w0 car.png)"'", "mime_type": "image/png"}
    ]
}'

Compréhension audio

Python

import base64
from pathlib import Path
from google import genai

client = genai.Client()

# Read and encode the audio
with open(Path(__file__).parent / "speech.wav", "rb") as f:
    base64_audio = base64.b64encode(f.read()).decode('utf-8')

interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input=[
        {"type": "text", "text": "What does this audio say?"},
        {"type": "audio", "data": base64_audio, "mime_type": "audio/wav"}
    ]
)

print(interaction.outputs[-1].text)

JavaScript

import { GoogleGenAI } from '@google/genai';
import * as fs from 'fs';

const client = new GoogleGenAI({});

const base64Audio = fs.readFileSync('speech.wav', { encoding: 'base64' });

const interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: [
        { type: 'text', text: 'What does this audio say?' },
        { type: 'audio', data: base64Audio, mime_type: 'audio/wav' }
    ]
});

console.log(interaction.outputs[interaction.outputs.length - 1].text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": [
        {"type": "text", "text": "What does this audio say?"},
        {"type": "audio", "data": "'"$(base64 -w0 speech.wav)"'", "mime_type": "audio/wav"}
    ]
}'

Compréhension des vidéos

Python

import base64
from pathlib import Path
from google import genai

client = genai.Client()

# Read and encode the video
with open(Path(__file__).parent / "video.mp4", "rb") as f:
    base64_video = base64.b64encode(f.read()).decode('utf-8')

print("Analyzing video...")
interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input=[
        {"type": "text", "text": "What is happening in this video? Provide a timestamped summary."},
        {"type": "video", "data": base64_video, "mime_type": "video/mp4" }
    ]
)

print(interaction.outputs[-1].text)

JavaScript

import { GoogleGenAI } from '@google/genai';
import * as fs from 'fs';

const client = new GoogleGenAI({});

const base64Video = fs.readFileSync('video.mp4', { encoding: 'base64' });

console.log('Analyzing video...');
const interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: [
        { type: 'text', text: 'What is happening in this video? Provide a timestamped summary.' },
        { type: 'video', data: base64Video, mime_type: 'video/mp4'}
    ]
});

console.log(interaction.outputs[interaction.outputs.length - 1].text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": [
        {"type": "text", "text": "What is happening in this video?"},
        {"type": "video", "mime_type": "video/mp4", "data": "'"$(base64 -w0 video.mp4)"'"}
    ]
}'

Compréhension des documents (PDF)

Python

import base64
from google import genai

client = genai.Client()

with open("sample.pdf", "rb") as f:
    base64_pdf = base64.b64encode(f.read()).decode('utf-8')

interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input=[
        {"type": "text", "text": "What is this document about?"},
        {"type": "document", "data": base64_pdf, "mime_type": "application/pdf"}
    ]
)
print(interaction.outputs[-1].text)

JavaScript

import { GoogleGenAI } from '@google/genai';
import * as fs from 'fs';
const client = new GoogleGenAI({});

const base64Pdf = fs.readFileSync('sample.pdf', { encoding: 'base64' });

const interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: [
        { type: 'text', text: 'What is this document about?' },
        { type: 'document', data: base64Pdf, mime_type: 'application/pdf' }
    ],
});
console.log(interaction.outputs[0].text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": [
        {"type": "text", "text": "What is this document about?"},
        {"type": "document", "data": "'"$(base64 -w0 sample.pdf)"'", "mime_type": "application/pdf"}
    ]
}'

Génération multimodale

Vous pouvez utiliser l'API Interactions pour générer des sorties multimodales.

Génération d'images

Python

import base64
from google import genai

client = genai.Client()

interaction = client.interactions.create(
    model="gemini-3-pro-image-preview",
    input="Generate an image of a futuristic city.",
    response_modalities=["IMAGE"]
)

for output in interaction.outputs:
    if output.type == "image":
        print(f"Generated image with mime_type: {output.mime_type}")
        # Save the image
        with open("generated_city.png", "wb") as f:
            f.write(base64.b64decode(output.data))

JavaScript

import { GoogleGenAI } from '@google/genai';
import * as fs from 'fs';

const client = new GoogleGenAI({});

const interaction = await client.interactions.create({
    model: 'gemini-3-pro-image-preview',
    input: 'Generate an image of a futuristic city.',
    response_modalities: ['IMAGE']
});

for (const output of interaction.outputs) {
    if (output.type === 'image') {
        console.log(`Generated image with mime_type: ${output.mime_type}`);
        // Save the image
        fs.writeFileSync('generated_city.png', Buffer.from(output.data, 'base64'));
    }
}

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-3-pro-image-preview",
    "input": "Generate an image of a futuristic city.",
    "response_modalities": ["IMAGE"]
}'

Capacités agentives

L'API Interactions est conçue pour créer des agents et interagir avec eux. Elle est compatible avec l'appel de fonctions, les outils intégrés, les sorties structurées et le protocole MCP (Model Context Protocol).

Agents

Vous pouvez utiliser des agents spécialisés tels que deep-research-pro-preview-12-2025 pour les tâches complexes. Pour en savoir plus sur l'agent Gemini Deep Research, consultez le guide Deep Research.

Python

import time
from google import genai

client = genai.Client()

# 1. Start the Deep Research Agent
initial_interaction = client.interactions.create(
    input="Research the history of the Google TPUs with a focus on 2025 and 2026.",
    agent="deep-research-pro-preview-12-2025",
    background=True
)

print(f"Research started. Interaction ID: {initial_interaction.id}")

# 2. Poll for results
while True:
    interaction = client.interactions.get(initial_interaction.id)
    print(f"Status: {interaction.status}")

    if interaction.status == "completed":
        print("\nFinal Report:\n", interaction.outputs[-1].text)
        break
    elif interaction.status in ["failed", "cancelled"]:
        print(f"Failed with status: {interaction.status}")
        break

    time.sleep(10)

JavaScript

import { GoogleGenAI } from '@google/genai';

const client = new GoogleGenAI({});

// 1. Start the Deep Research Agent
const initialInteraction = await client.interactions.create({
    input: 'Research the history of the Google TPUs with a focus on 2025 and 2026.',
    agent: 'deep-research-pro-preview-12-2025',
    background: true
});

console.log(`Research started. Interaction ID: ${initialInteraction.id}`);

// 2. Poll for results
while (true) {
    const interaction = await client.interactions.get(initialInteraction.id);
    console.log(`Status: ${interaction.status}`);

    if (interaction.status === 'completed') {
        console.log('\nFinal Report:\n', interaction.outputs[interaction.outputs.length - 1].text);
        break;
    } else if (['failed', 'cancelled'].includes(interaction.status)) {
        console.log(`Failed with status: ${interaction.status}`);
        break;
    }

    await new Promise(resolve => setTimeout(resolve, 10000));
}

REST

# 1. Start the Deep Research Agent
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "input": "Research the history of the Google TPUs with a focus on 2025 and 2026.",
    "agent": "deep-research-pro-preview-12-2025",
    "background": true
}'

# 2. Poll for results (Replace INTERACTION_ID with the ID from the previous interaction)
# curl -X GET "https://generativelanguage.googleapis.com/v1beta/interactions/INTERACTION_ID" \
# -H "x-goog-api-key: $GEMINI_API_KEY"

Outils et appels de fonction

Cette section explique comment utiliser l'appel de fonction pour définir des outils personnalisés et comment utiliser les outils intégrés de Google dans l'API Interactions.

Appel de fonction

Python

from google import genai

client = genai.Client()

# 1. Define the tool
def get_weather(location: str):
    """Gets the weather for a given location."""
    return f"The weather in {location} is sunny."

weather_tool = {
    "type": "function",
    "name": "get_weather",
    "description": "Gets the weather for a given location.",
    "parameters": {
        "type": "object",
        "properties": {
            "location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}
        },
        "required": ["location"]
    }
}

# 2. Send the request with tools
interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input="What is the weather in Paris?",
    tools=[weather_tool]
)

# 3. Handle the tool call
for output in interaction.outputs:
    if output.type == "function_call":
        print(f"Tool Call: {output.name}({output.arguments})")
        # Execute tool
        result = get_weather(**output.arguments)

        # Send result back
        interaction = client.interactions.create(
            model="gemini-2.5-flash",
            previous_interaction_id=interaction.id,
            input=[{
                "type": "function_result",
                "name": output.name,
                "call_id": output.id,
                "result": result
            }]
        )
        print(f"Response: {interaction.outputs[-1].text}")

JavaScript

import { GoogleGenAI } from '@google/genai';

const client = new GoogleGenAI({});

// 1. Define the tool
const weatherTool = {
    type: 'function',
    name: 'get_weather',
    description: 'Gets the weather for a given location.',
    parameters: {
        type: 'object',
        properties: {
            location: { type: 'string', description: 'The city and state, e.g. San Francisco, CA' }
        },
        required: ['location']
    }
};

// 2. Send the request with tools
let interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: 'What is the weather in Paris?',
    tools: [weatherTool]
});

// 3. Handle the tool call
for (const output of interaction.outputs) {
    if (output.type === 'function_call') {
        console.log(`Tool Call: ${output.name}(${JSON.stringify(output.arguments)})`);

        // Execute tool (Mocked)
        const result = `The weather in ${output.arguments.location} is sunny.`;

        // Send result back
        interaction = await client.interactions.create({
            model: 'gemini-2.5-flash',
            previous_interaction_id: interaction.id,
            input: [{
                type: 'function_result',
                name: output.name,
                call_id: output.id,
                result: result
            }]
        });
        console.log(`Response: ${interaction.outputs[interaction.outputs.length - 1].text}`);
    }
}

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": "What is the weather in Paris?",
    "tools": [{
        "type": "function",
        "name": "get_weather",
        "description": "Gets the weather for a given location.",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}
            },
            "required": ["location"]
        }
    }]
}'

# Handle the tool call and send result back (Replace INTERACTION_ID and CALL_ID)
# curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
# -H "Content-Type: application/json" \
# -H "x-goog-api-key: $GEMINI_API_KEY" \
# -d '{
#     "model": "gemini-2.5-flash",
#     "previous_interaction_id": "INTERACTION_ID",
#     "input": [{
#         "type": "function_result",
#         "name": "get_weather",
#         "call_id": "FUNCTION_CALL_ID",
#         "result": "The weather in Paris is sunny."
#     }]
# }'
Appel de fonction avec état côté client

Si vous ne souhaitez pas utiliser l'état côté serveur, vous pouvez tout gérer côté client.

Python

from google import genai
client = genai.Client()

functions = [
    {
        "type": "function",
        "name": "schedule_meeting",
        "description": "Schedules a meeting with specified attendees at a given time and date.",
        "parameters": {
            "type": "object",
            "properties": {
                "attendees": {"type": "array", "items": {"type": "string"}},
                "date": {"type": "string", "description": "Date of the meeting (e.g., 2024-07-29)"},
                "time": {"type": "string", "description": "Time of the meeting (e.g., 15:00)"},
                "topic": {"type": "string", "description": "The subject of the meeting."},
            },
            "required": ["attendees", "date", "time", "topic"],
        },
    }
]

history = [{"role": "user","content": [{"type": "text", "text": "Schedule a meeting for 2025-11-01 at 10 am with Peter and Amir about the Next Gen API."}]}]

# 1. Model decides to call the function
interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input=history,
    tools=functions
)

# add model interaction back to history
history.append({"role": "model", "content": interaction.outputs})

for output in interaction.outputs:
    if output.type == "function_call":
        print(f"Function call: {output.name} with arguments {output.arguments}")

        # 2. Execute the function and get a result
        # In a real app, you would call your function here.
        # call_result = schedule_meeting(**json.loads(output.arguments))
        call_result = "Meeting scheduled successfully."

        # 3. Send the result back to the model
        history.append({"role": "user", "content": [{"type": "function_result", "name": output.name, "call_id": output.id, "result": call_result}]})

        interaction2 = client.interactions.create(
            model="gemini-2.5-flash",
            input=history,
        )
        print(f"Final response: {interaction2.outputs[-1].text}")
    else:
        print(f"Output: {output}")

JavaScript

// 1. Define the tool
const functions = [
    {
        type: 'function',
        name: 'schedule_meeting',
        description: 'Schedules a meeting with specified attendees at a given time and date.',
        parameters: {
            type: 'object',
            properties: {
                attendees: { type: 'array', items: { type: 'string' } },
                date: { type: 'string', description: 'Date of the meeting (e.g., 2024-07-29)' },
                time: { type: 'string', description: 'Time of the meeting (e.g., 15:00)' },
                topic: { type: 'string', description: 'The subject of the meeting.' },
            },
            required: ['attendees', 'date', 'time', 'topic'],
        },
    },
];

const history = [
    { role: 'user', content: [{ type: 'text', text: 'Schedule a meeting for 2025-11-01 at 10 am with Peter and Amir about the Next Gen API.' }] }
];

// 2. Model decides to call the function
let interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: history,
    tools: functions
});

// add model interaction back to history
history.push({ role: 'model', content: interaction.outputs });

for (const output of interaction.outputs) {
    if (output.type === 'function_call') {
        console.log(`Function call: ${output.name} with arguments ${JSON.stringify(output.arguments)}`);

        // 3. Send the result back to the model
        history.push({ role: 'user', content: [{ type: 'function_result', name: output.name, call_id: output.id, result: 'Meeting scheduled successfully.' }] });

        const interaction2 = await client.interactions.create({
            model: 'gemini-2.5-flash',
            input: history,
        });
        console.log(`Final response: ${interaction2.outputs[interaction2.outputs.length - 1].text}`);
    }
}

Outils intégrés

Gemini est fourni avec des outils intégrés tels que l'ancrage avec la recherche Google, l'exécution de code et le contexte d'URL.

Python

from google import genai

client = genai.Client()

interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input="Who won the last Super Bowl?",
    tools=[{"type": "google_search"}]
)
# Find the text output (not the GoogleSearchResultContent)
text_output = next((o for o in interaction.outputs if o.type == "text"), None)
if text_output:
    print(text_output.text)

JavaScript

import { GoogleGenAI } from '@google/genai';

const client = new GoogleGenAI({});

const interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: 'Who won the last Super Bowl?',
    tools: [{ type: 'google_search' }]
});
// Find the text output (not the GoogleSearchResultContent)
const textOutput = interaction.outputs.find(o => o.type === 'text');
if (textOutput) console.log(textOutput.text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": "Who won the last Super Bowl?",
    "tools": [{"type": "google_search"}]
}'
Exécution du code

Python

from google import genai

client = genai.Client()

interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input="Calculate the 50th Fibonacci number.",
    tools=[{"type": "code_execution"}]
)
print(interaction.outputs[-1].text)

JavaScript

import { GoogleGenAI } from '@google/genai';

const client = new GoogleGenAI({});

const interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: 'Calculate the 50th Fibonacci number.',
    tools: [{ type: 'code_execution' }]
});
console.log(interaction.outputs[interaction.outputs.length - 1].text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": "Calculate the 50th Fibonacci number.",
    "tools": [{"type": "code_execution"}]
}'
Contexte de l'URL

Python

from google import genai

client = genai.Client()

interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input="Summarize the content of https://www.wikipedia.org/",
    tools=[{"type": "url_context"}]
)
# Find the text output (not the URLContextResultContent)
text_output = next((o for o in interaction.outputs if o.type == "text"), None)
if text_output:
    print(text_output.text)

JavaScript

import { GoogleGenAI } from '@google/genai';

const client = new GoogleGenAI({});

const interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: 'Summarize the content of https://www.wikipedia.org/',
    tools: [{ type: 'url_context' }]
});
// Find the text output (not the URLContextResultContent)
const textOutput = interaction.outputs.find(o => o.type === 'text');
if (textOutput) console.log(textOutput.text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": "Summarize the content of https://www.wikipedia.org/",
    "tools": [{"type": "url_context"}]
}'

Protocole MCP (Model Context Protocol) à distance

L'intégration MCP à distance simplifie le développement d'agents en permettant à l'API Gemini d'appeler directement des outils externes hébergés sur des serveurs distants.

Python

from google import genai

client = genai.Client()

mcp_server = {
    "type": "mcp_server",
    "name": "weather_service",
    "url": "https://gemini-api-demos.uc.r.appspot.com/mcp"
}

interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input="What is the weather like in New York today?",
    tools=[mcp_server]
)

print(interaction.outputs[-1].text)

JavaScript

import { GoogleGenAI } from '@google/genai';

const client = new GoogleGenAI({});

const mcpServer = {
    type: 'mcp_server',
    name: 'weather_service',
    url: 'https://gemini-api-demos.uc.r.appspot.com/mcp'
};

const interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: 'What is the weather like in New York today?',
    tools: [mcpServer]
});

console.log(interaction.outputs[interaction.outputs.length - 1].text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": "What is the weather like in New York today?",
    "tools": [{
        "type": "mcp_server",
        "name": "weather_service",
        "url": "https://gemini-api-demos.uc.r.appspot.com/mcp"
    }]
}'

Sortie structurée (schéma JSON)

Appliquez un format de sortie JSON spécifique en fournissant un schéma JSON dans le paramètre response_format. Cela est utile pour des tâches telles que la modération, la classification ou l'extraction de données.

Python

from google import genai
from pydantic import BaseModel, Field
from typing import Literal, Union
client = genai.Client()

class SpamDetails(BaseModel):
    reason: str = Field(description="The reason why the content is considered spam.")
    spam_type: Literal["phishing", "scam", "unsolicited promotion", "other"]

class NotSpamDetails(BaseModel):
    summary: str = Field(description="A brief summary of the content.")
    is_safe: bool = Field(description="Whether the content is safe for all audiences.")

class ModerationResult(BaseModel):
    decision: Union[SpamDetails, NotSpamDetails]

interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input="Moderate the following content: 'Congratulations! You've won a free cruise. Click here to claim your prize: www.definitely-not-a-scam.com'",
    response_format=ModerationResult.model_json_schema(),
)

parsed_output = ModerationResult.model_validate_json(interaction.outputs[-1].text)
print(parsed_output)

JavaScript

import { GoogleGenAI } from '@google/genai';
import { z } from 'zod';
const client = new GoogleGenAI({});

const moderationSchema = z.object({
    decision: z.union([
        z.object({
            reason: z.string().describe('The reason why the content is considered spam.'),
            spam_type: z.enum(['phishing', 'scam', 'unsolicited promotion', 'other']).describe('The type of spam.'),
        }).describe('Details for content classified as spam.'),
        z.object({
            summary: z.string().describe('A brief summary of the content.'),
            is_safe: z.boolean().describe('Whether the content is safe for all audiences.'),
        }).describe('Details for content classified as not spam.'),
    ]),
});

const interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: "Moderate the following content: 'Congratulations! You've won a free cruise. Click here to claim your prize: www.definitely-not-a-scam.com'",
    response_format: z.toJSONSchema(moderationSchema),
});
console.log(interaction.outputs[0].text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": "Moderate the following content: 'Congratulations! You've won a free cruise. Click here to claim your prize: www.definitely-not-a-scam.com'",
    "response_format": {
        "type": "object",
        "properties": {
            "decision": {
                "type": "object",
                "properties": {
                    "reason": {"type": "string", "description": "The reason why the content is considered spam."},
                    "spam_type": {"type": "string", "description": "The type of spam."}
                },
                "required": ["reason", "spam_type"]
            }
        },
        "required": ["decision"]
    }
}'

Combiner des outils et une sortie structurée

Combinez des outils intégrés à une sortie structurée pour obtenir un objet JSON fiable basé sur les informations récupérées par un outil.

Python

from google import genai
from pydantic import BaseModel, Field
from typing import Literal, Union

client = genai.Client()

class SpamDetails(BaseModel):
    reason: str = Field(description="The reason why the content is considered spam.")
    spam_type: Literal["phishing", "scam", "unsolicited promotion", "other"]

class NotSpamDetails(BaseModel):
    summary: str = Field(description="A brief summary of the content.")
    is_safe: bool = Field(description="Whether the content is safe for all audiences.")

class ModerationResult(BaseModel):
    decision: Union[SpamDetails, NotSpamDetails]

interaction = client.interactions.create(
    model="gemini-3-pro-preview",
    input="Moderate the following content: 'Congratulations! You've won a free cruise. Click here to claim your prize: www.definitely-not-a-scam.com'",
    response_format=ModerationResult.model_json_schema(),
    tools=[{"type": "url_context"}]
)

parsed_output = ModerationResult.model_validate_json(interaction.outputs[-1].text)
print(parsed_output)

JavaScript

import { GoogleGenAI } from '@google/genai';
import { z } from 'zod'; // Assuming zod is used for schema generation, or define manually
const client = new GoogleGenAI({});

const obj = z.object({
    winning_team: z.string(),
    score: z.string(),
});
const schema = z.toJSONSchema(obj);

const interaction = await client.interactions.create({
    model: 'gemini-3-pro-preview',
    input: 'Who won the last euro?',
    tools: [{ type: 'google_search' }],
    response_format: schema,
});
console.log(interaction.outputs[0].text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-3-pro-preview",
    "input": "Who won the last euro?",
    "tools": [{"type": "google_search"}],
    "response_format": {
        "type": "object",
        "properties": {
            "winning_team": {"type": "string"},
            "score": {"type": "string"}
        }
    }
}'

Fonctionnalités avancées

Des fonctionnalités avancées supplémentaires vous offrent également plus de flexibilité pour travailler avec l'API Interactions.

Streaming

Recevez les réponses de manière incrémentielle à mesure qu'elles sont générées.

Python

from google import genai

client = genai.Client()

stream = client.interactions.create(
    model="gemini-2.5-flash",
    input="Explain quantum entanglement in simple terms.",
    stream=True
)

for chunk in stream:
    if chunk.event_type == "content.delta":
        if chunk.delta.type == "text":
            print(chunk.delta.text, end="", flush=True)
        elif chunk.delta.type == "thought":
            print(chunk.delta.thought, end="", flush=True)
    elif chunk.event_type == "interaction.complete":
        print(f"\n\n--- Stream Finished ---")
        print(f"Total Tokens: {chunk.interaction.usage.total_tokens}")

JavaScript

import { GoogleGenAI } from '@google/genai';

const client = new GoogleGenAI({});

const stream = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: 'Explain quantum entanglement in simple terms.',
    stream: true,
});

for await (const chunk of stream) {
    if (chunk.event_type === 'content.delta') {
        if (chunk.delta.type === 'text' && 'text' in chunk.delta) {
            process.stdout.write(chunk.delta.text);
        } else if (chunk.delta.type === 'thought' && 'thought' in chunk.delta) {
            process.stdout.write(chunk.delta.thought);
        }
    } else if (chunk.event_type === 'interaction.complete') {
        console.log('\n\n--- Stream Finished ---');
        console.log(`Total Tokens: ${chunk.interaction.usage.total_tokens}`);
    }
}

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions?alt=sse" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": "Explain quantum entanglement in simple terms.",
    "stream": true
}'

Configuration

Personnalisez le comportement du modèle avec generation_config.

Python

from google import genai

client = genai.Client()

interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input="Tell me a story about a brave knight.",
    generation_config={
        "temperature": 0.7,
        "max_output_tokens": 500,
        "thinking_level": "low",
    }
)

print(interaction.outputs[-1].text)

JavaScript

import { GoogleGenAI } from '@google/genai';

const client = new GoogleGenAI({});

const interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: 'Tell me a story about a brave knight.',
    generation_config: {
        temperature: 0.7,
        max_output_tokens: 500,
        thinking_level: 'low',
    }
});

console.log(interaction.outputs[interaction.outputs.length - 1].text);

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": "Tell me a story about a brave knight.",
    "generation_config": {
        "temperature": 0.7,
        "max_output_tokens": 500,
        "thinking_level": "low"
    }
}'

Utiliser des fichiers

Utiliser des fichiers distants

Accédez aux fichiers à l'aide d'URL distantes directement dans l'appel d'API.

Python

from google import genai
client = genai.Client()

interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input=[
        {
            "type": "image",
            "uri": "https://github.com/<github-path>/cats-and-dogs.jpg",
        },
        {"type": "text", "text": "Describe what you see."}
    ],
)
for output in interaction.outputs:
    if output.type == "text":
        print(output.text)

JavaScript

import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});

const interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: [
        {
            type: 'image',
            uri: 'https://github.com/<github-path>/cats-and-dogs.jpg',
        },
        { type: 'text', text: 'Describe what you see.' }
    ],
});
for (const output of interaction.outputs) {
    if (output.type === 'text') {
        console.log(output.text);
    }
}

REST

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": [
        {
            "type": "image",
            "uri": "https://github.com/<github-path>/cats-and-dogs.jpg"
        },
        {"type": "text", "text": "Describe what you see."}
    ]
}'

Utiliser l'API Gemini Files

Importez des fichiers dans l'API Files de Gemini avant de les utiliser.

Python

from google import genai
import time
import requests
client = genai.Client()

# 1. Download the file
url = "https://github.com/philschmid/gemini-samples/raw/refs/heads/main/assets/cats-and-dogs.jpg"
response = requests.get(url)
with open("cats-and-dogs.jpg", "wb") as f:
    f.write(response.content)

# 2. Upload to Gemini Files API
file = client.files.upload(file="cats-and-dogs.jpg")

# 3. Wait for processing
while client.files.get(name=file.name).state != "ACTIVE":
    time.sleep(2)

# 4. Use in Interaction
interaction = client.interactions.create(
    model="gemini-2.5-flash",
    input=[
        {
            "type": "image",
            "uri": file.uri,
        },
        {"type": "text", "text": "Describe what you see."}
    ],
)
for output in interaction.outputs:
    if output.type == "text":
        print(output.text)

JavaScript

import { GoogleGenAI } from '@google/genai';
import * as fs from 'fs';
import fetch from 'node-fetch';
const client = new GoogleGenAI({});

// 1. Download the file
const url = 'https://github.com/philschmid/gemini-samples/raw/refs/heads/main/assets/cats-and-dogs.jpg';
const filename = 'cats-and-dogs.jpg';
const response = await fetch(url);
const buffer = await response.buffer();
fs.writeFileSync(filename, buffer);

// 2. Upload to Gemini Files API
const myfile = await client.files.upload({ file: filename, config: { mimeType: 'image/jpeg' } });

// 3. Wait for processing
while ((await client.files.get({ name: myfile.name })).state !== 'ACTIVE') {
    await new Promise(resolve => setTimeout(resolve, 2000));
}

// 4. Use in Interaction
const interaction = await client.interactions.create({
    model: 'gemini-2.5-flash',
    input: [
        { type: 'image', uri: myfile.uri, },
        { type: 'text', text: 'Describe what you see.' }
    ],
});
for (const output of interaction.outputs) {
    if (output.type === 'text') {
        console.log(output.text);
    }
}

REST

# 1. Upload the file (Requires File API setup)
# See https://ai.google.dev/gemini-api/docs/files for details.
# Assume FILE_URI is obtained from the upload step.

curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "input": [
        {"type": "image", "uri": "FILE_URI"},
        {"type": "text", "text": "Describe what you see."}
    ]
}'

Modèle de données

Pour en savoir plus sur le modèle de données, consultez la documentation de référence de l'API. Vous trouverez ci-dessous une vue d'ensemble des principaux composants.

Interaction

Propriété Type Description
id string Identifiant unique de l'interaction.
model/agent string Modèle ou agent utilisé. Vous ne pouvez en fournir qu'un seul.
input Content[] Les entrées fournies.
outputs Content[] Les réponses du modèle.
tools Tool[] les outils utilisés.
previous_interaction_id string ID de l'interaction précédente pour le contexte.
stream boolean Indique si l'interaction est en streaming.
status string État : completed, in_progress, requires_action,failed, etc.
background boolean Indique si l'interaction est en mode arrière-plan.
store boolean Indique si l'interaction doit être stockée. Valeur par défaut : true Définissez sur false pour désactiver.
usage Utilisation Utilisation de jetons pour la demande d'interaction.

Modèles et agents compatibles

Nom du modèle Type ID du modèle
Gemini 2.5 Pro Modèle gemini-2.5-pro
Gemini 2.0 Flash Modèle gemini-2.5-flash
Gemini 2.5 Flash-Lite Modèle gemini-2.5-flash-lite
Aperçu de Gemini 3 Pro Modèle gemini-3-pro-preview
Aperçu de Deep Research Agent deep-research-pro-preview-12-2025

Fonctionnement de l'API Interactions

L'API Interactions est conçue autour d'une ressource centrale : Interaction. Un Interaction représente un tour complet dans une conversation ou une tâche. Il sert d'enregistrement de session et contient l'historique complet d'une interaction, y compris toutes les entrées utilisateur, les réflexions du modèle, les appels d'outils, les résultats d'outils et les sorties finales du modèle.

Lorsque vous appelez interactions.create, vous créez une ressource Interaction.

Vous pouvez également utiliser le id de cette ressource dans un appel ultérieur à l'aide du paramètre previous_interaction_id pour poursuivre la conversation. Le serveur utilise cet ID pour récupérer le contexte complet, ce qui vous évite d'avoir à renvoyer l'intégralité de l'historique des discussions. Cette gestion de l'état côté serveur est facultative. Vous pouvez également fonctionner en mode sans état en envoyant l'intégralité de l'historique des conversations dans chaque requête.

Stockage et conservation des données

Par défaut, tous les objets Interaction sont stockés (store=true) afin de simplifier l'utilisation des fonctionnalités de gestion de l'état côté serveur (avec previous_interaction_id), l'exécution en arrière-plan (à l'aide de background=true) et à des fins d'observabilité.

  • Niveau payant : les interactions sont conservées pendant 55 jours.
  • Niveau sans frais : les interactions sont conservées pendant un jour.

Si vous ne le souhaitez pas, vous pouvez définir store=false dans votre demande. Cette commande est distincte de la gestion de l'état. Vous pouvez désactiver le stockage pour n'importe quelle interaction. Notez toutefois que store=false n'est pas compatible avec background=true et empêche l'utilisation de previous_interaction_id pour les tours suivants.

Vous pouvez supprimer les interactions stockées à tout moment à l'aide de la méthode de suppression disponible dans la documentation de référence de l'API. Vous ne pouvez supprimer des interactions que si vous connaissez leur ID.

Une fois la période de conservation expirée, vos données seront automatiquement supprimées.

Les objets d'interaction sont traités conformément aux Conditions d'utilisation.

Bonnes pratiques

  • Taux de succès du cache : l'utilisation de previous_interaction_id pour poursuivre les conversations permet au système d'utiliser plus facilement la mise en cache implicite pour l'historique des conversations, ce qui améliore les performances et réduit les coûts.
  • Combiner les interactions : vous pouvez combiner les interactions avec l'agent et le modèle dans une même conversation. Par exemple, vous pouvez utiliser un agent spécialisé, comme l'agent Deep Research, pour la collecte initiale de données, puis utiliser un modèle Gemini standard pour les tâches de suivi telles que la synthèse ou le reformatage, en associant ces étapes à l'previous_interaction_id.

SDK

Vous pouvez utiliser la dernière version des SDK Google GenAI pour accéder à l'API Interactions.

  • Sur Python, il s'agit du package google-genai à partir de la version 1.55.0.
  • Dans JavaScript, il s'agit du package @google/genai à partir de la version 1.33.0.

Pour savoir comment installer les SDK, consultez la page Bibliothèques.

Limites

  • État bêta : l'API Interactions est en version bêta/preview. Les fonctionnalités et les schémas peuvent changer.
  • Fonctionnalités non compatibles : les fonctionnalités suivantes ne sont pas encore disponibles, mais le seront bientôt :

  • Ordre de sortie : l'ordre du contenu des outils intégrés (google_search et url_context) peut parfois être incorrect, avec du texte qui apparaît avant l'exécution et le résultat de l'outil. Il s'agit d'un problème connu et un correctif est en cours.

  • Combinaisons d'outils : la combinaison de MCP, de l'appel de fonction et des outils intégrés n'est pas encore disponible, mais le sera bientôt.

  • MCP à distance : Gemini 3 n'est pas compatible avec le MCP à distance. Cette fonctionnalité sera bientôt disponible.

Modifications importantes

L'API Interactions est actuellement en version bêta. Nous développons et affinons activement les fonctionnalités de l'API, les schémas de ressources et les interfaces SDK en fonction de l'utilisation réelle et des commentaires des développeurs.

Par conséquent, des modifications destructives peuvent se produire. Les mises à jour peuvent inclure des modifications concernant les éléments suivants :

  • Schémas pour les entrées et les sorties.
  • Signatures des méthodes du SDK et structures d'objet.
  • Comportements spécifiques des fonctionnalités.

Pour les charges de travail de production, vous devez continuer à utiliser l'API generateContent standard. Il reste la méthode recommandée pour les déploiements stables et continuera d'être activement développé et géré.

Commentaires

Vos commentaires sont essentiels au développement de l'API Interactions. N'hésitez pas à partager vos commentaires, à signaler des bugs ou à demander des fonctionnalités sur notre forum de la communauté des développeurs Google IA.

Étape suivante