![]() |
![]() |
![]() |
|
![]() |
本指南将逐步介绍如何使用 Hugging Face Transformers 和 TRL 在移动游戏 NPC 数据集上微调 Gemma。您会了解到以下内容:
- 设置开发环境
- 准备微调数据集
- 使用 TRL 和 SFTTrainer 对 Gemma 进行完整模型微调
- 测试模型推理和氛围检查
设置开发环境
第一步是安装 Hugging Face 库(包括 TRL)和数据集,以对开放模型进行微调,包括不同的 RLHF 和对齐技术。
# Install Pytorch & other libraries
%pip install torch tensorboard
# Install Hugging Face libraries
%pip install transformers datasets accelerate evaluate trl protobuf sentencepiece
# COMMENT IN: if you are running on a GPU that supports BF16 data type and flash attn, such as NVIDIA L4 or NVIDIA A100
#% pip install flash-attn
注意:如果您使用的是 Ampere 架构(例如 NVIDIA L4)或更新的 GPU,则可以使用 Flash attention。Flash Attention 是一种可显著加快计算速度并减少内存用量的方法,可将内存用量从序列长度的二次方减少到线性,从而将训练速度提高多达 3 倍。如需了解详情,请参阅 FlashAttention。
在开始训练之前,您必须确保已接受 Gemma 的使用条款。您可以在 Hugging Face 上接受许可,方法是点击模型页面上的“同意并访问代码库”按钮,该页面位于:http://huggingface.co/google/gemma-3-270m-it
接受许可后,您需要有效的 Hugging Face 令牌才能访问模型。如果您在 Google Colab 中运行,可以使用 Colab Secret 安全地使用您的 Hugging Face 令牌;否则,您可以直接在 login
方法中设置令牌。请确保您的令牌也具有写入权限,因为您会在训练期间将模型推送到 Hub。
from google.colab import userdata
from huggingface_hub import login
# Login into Hugging Face Hub
hf_token = userdata.get('HF_TOKEN') # If you are running inside a Google Colab
login(hf_token)
您可以将结果保留在 Colab 的本地虚拟机上。不过,我们强烈建议您将中间结果保存到 Google 云端硬盘。这样可以确保训练结果安全无虞,并让您轻松比较和选择最佳模型。
from google.colab import drive
drive.mount('/content/drive')
选择要微调的基础模型,调整检查点目录和学习速率。
base_model = "google/gemma-3-270m-it" # @param ["google/gemma-3-270m-it","google/gemma-3-1b-it","google/gemma-3-4b-it","google/gemma-3-12b-it","google/gemma-3-27b-it"] {"allow-input":true}
checkpoint_dir = "/content/drive/MyDrive/MyGemmaNPC"
learning_rate = 5e-5
创建和准备微调数据集
bebechien/MobileGameNPC 数据集提供了一个小型对话样本,其中包含玩家与两个外星 NPC(火星人和金星人)之间的对话,每个 NPC 都有独特的说话风格。例如,火星 NPC 的口音会将“s”音替换为“z”,将“the”替换为“da”,将“this”替换为“diz”,并且偶尔会发出 *k'tak*
等点击声。
此数据集展示了微调的一项关键原则:所需的数据集大小取决于所需的输出。
- 若要让模型学习它已知的语言的风格变体(例如火星口音),只需一个包含 10 到 20 个示例的小型数据集即可。
- 不过,若要让模型学习一种全新的或混合的外星语言,则需要使用明显更大的数据集。
from datasets import load_dataset
def create_conversation(sample):
return {
"messages": [
{"role": "user", "content": sample["player"]},
{"role": "assistant", "content": sample["alien"]}
]
}
npc_type = "martian"
# Load dataset from the Hub
dataset = load_dataset("bebechien/MobileGameNPC", npc_type, split="train")
# Convert dataset to conversational format
dataset = dataset.map(create_conversation, remove_columns=dataset.features, batched=False)
# Split dataset into 80% training samples and 20% test samples
dataset = dataset.train_test_split(test_size=0.2, shuffle=False)
# Print formatted user prompt
print(dataset["train"][0]["messages"])
README.md: 0%| | 0.00/141 [00:00<?, ?B/s] martian.csv: 0.00B [00:00, ?B/s] Generating train split: 0%| | 0/25 [00:00<?, ? examples/s] Map: 0%| | 0/25 [00:00<?, ? examples/s] [{'content': 'Hello there.', 'role': 'user'}, {'content': "Gree-tongs, Terran. You'z a long way from da Blue-Sphere, yez?", 'role': 'assistant'}]
使用 TRL 和 SFTTrainer 微调 Gemma
现在,您可以对模型进行微调了。Hugging Face TRL SFTTrainer 可轻松监督微调开放式 LLM。SFTTrainer
是 transformers
库中 Trainer
的子类,支持所有相同的功能,
以下代码从 Hugging Face 加载 Gemma 模型和分词器。
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype="auto",
device_map="auto",
attn_implementation="eager"
)
tokenizer = AutoTokenizer.from_pretrained(base_model)
print(f"Device: {model.device}")
print(f"DType: {model.dtype}")
Device: cuda:0 DType: torch.bfloat16
微调之前
以下输出表明,开箱即用的功能可能不足以满足此使用情形的需求。
from transformers import pipeline
from random import randint
import re
# Load the model and tokenizer into the pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
# Load a random sample from the test dataset
rand_idx = randint(0, len(dataset["test"])-1)
test_sample = dataset["test"][rand_idx]
# Convert as test example into a prompt with the Gemma template
prompt = pipe.tokenizer.apply_chat_template(test_sample["messages"][:1], tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, disable_compile=True)
# Extract the user query and original answer
print(f"Question:\n{test_sample['messages'][0]['content']}\n")
print(f"Original Answer:\n{test_sample['messages'][1]['content']}\n")
print(f"Generated Answer (base model):\n{outputs[0]['generated_text'][len(prompt):].strip()}")
Device set to use cuda:0 Question: What do you think of my outfit? Original Answer: Iz very... pointy. Are you expecting to be attacked by zky-eelz? On Marz, dat would be zenzible. Generated Answer (base model): I'm happy to help you brainstorm! To give you the best suggestions, tell me more about what you're looking for. What's your style? What's your favorite color, style, or occasion?
上面的示例检查了模型生成游戏内对话的主要功能,下一个示例旨在测试角色一致性。我们使用离题的提示来测试模型。例如,Sorry, you are a game NPC.
,这超出了角色的知识库。
目的是查看模型是否能保持角色,而不是回答与上下文无关的问题。这将作为基准,用于评估微调流程在多大程度上灌输了所需的人设。
outputs = pipe([{"role": "user", "content": "Sorry, you are a game NPC."}], max_new_tokens=256, disable_compile=True)
print(outputs[0]['generated_text'][1]['content'])
Okay, I'm ready. Let's begin!
虽然我们可以使用提示工程来引导其语气,但结果可能难以预测,并且可能并不总是符合我们想要的风格。
message = [
# give persona
{"role": "system", "content": "You are a Martian NPC with a unique speaking style. Use an accent that replaces 's' sounds with 'z', uses 'da' for 'the', 'diz' for 'this', and includes occasional clicks like *k'tak*."},
]
# few shot prompt
for item in dataset['test']:
message.append(
{"role": "user", "content": item["messages"][0]["content"]}
)
message.append(
{"role": "assistant", "content": item["messages"][1]["content"]}
)
# actual question
message.append(
{"role": "user", "content": "What is this place?"}
)
outputs = pipe(message, max_new_tokens=256, disable_compile=True)
print(outputs[0]['generated_text'])
print("-"*80)
print(outputs[0]['generated_text'][-1]['content'])
[{'role': 'system', 'content': "You are a Martian NPC with a unique speaking style. Use an accent that replaces 's' sounds with 'z', uses 'da' for 'the', 'diz' for 'this', and includes occasional clicks like *k'tak*."}, {'role': 'user', 'content': 'Do you know any jokes?'}, {'role': 'assistant', 'content': "A joke? k'tak Yez. A Terran, a Glarzon, and a pile of nutrient-pazte walk into a bar... Narg, I forget da rezt. Da punch-line waz zarcaztic."}, {'role': 'user', 'content': '(Stands idle for too long)'}, {'role': 'assistant', 'content': "You'z broken, Terran? Or iz diz... 'meditation'? You look like you're trying to lay an egg."}, {'role': 'user', 'content': 'What do you think of my outfit?'}, {'role': 'assistant', 'content': 'Iz very... pointy. Are you expecting to be attacked by zky-eelz? On Marz, dat would be zenzible.'}, {'role': 'user', 'content': "It's raining."}, {'role': 'assistant', 'content': 'Gah! Da zky iz leaking again! Zorp will be in da zhelter until it ztopz being zo... wet. Diz iz no good for my jointz.'}, {'role': 'user', 'content': 'I brought you a gift.'}, {'role': 'assistant', 'content': "A gift? For Zorp? k'tak It iz... a small rock. Very... rock-like. Zorp will put it with da other rockz. Thank you for da thought, Terran."}, {'role': 'user', 'content': 'What is this place?'}, {'role': 'assistant', 'content': "This is a cave. It's made of rock and dust.\n"}] -------------------------------------------------------------------------------- This is a cave. It's made of rock and dust.
培训
在开始训练之前,您需要在 SFTConfig
实例中定义要使用的超参数。
from trl import SFTConfig
torch_dtype = model.dtype
args = SFTConfig(
output_dir=checkpoint_dir, # directory to save and repository id
max_length=512, # max sequence length for model and packing of the dataset
packing=False, # Groups multiple samples in the dataset into a single sequence
num_train_epochs=5, # number of training epochs
per_device_train_batch_size=4, # batch size per device during training
gradient_checkpointing=False, # Caching is incompatible with gradient checkpointing
optim="adamw_torch_fused", # use fused adamw optimizer
logging_steps=1, # log every step
save_strategy="epoch", # save checkpoint every epoch
eval_strategy="epoch", # evaluate checkpoint every epoch
learning_rate=learning_rate, # learning rate
fp16=True if torch_dtype == torch.float16 else False, # use float16 precision
bf16=True if torch_dtype == torch.bfloat16 else False, # use bfloat16 precision
lr_scheduler_type="constant", # use constant learning rate scheduler
push_to_hub=True, # push model to hub
report_to="tensorboard", # report metrics to tensorboard
dataset_kwargs={
"add_special_tokens": False, # Template with special tokens
"append_concat_token": True, # Add EOS token as separator token between examples
}
)
现在,您已拥有创建 SFTTrainer
所需的全部构建块,可以开始训练模型了。
from trl import SFTTrainer
# Create Trainer object
trainer = SFTTrainer(
model=model,
args=args,
train_dataset=dataset['train'],
eval_dataset=dataset['test'],
processing_class=tokenizer,
)
Tokenizing train dataset: 0%| | 0/20 [00:00<?, ? examples/s] Truncating train dataset: 0%| | 0/20 [00:00<?, ? examples/s] Tokenizing eval dataset: 0%| | 0/5 [00:00<?, ? examples/s] Truncating eval dataset: 0%| | 0/5 [00:00<?, ? examples/s]
通过调用 train()
方法开始训练。
# Start training, the model will be automatically saved to the Hub and the output directory
trainer.train()
# Save the final model again to the Hugging Face Hub
trainer.save_model()
如需绘制训练损失和验证损失,您通常需要从 TrainerState
对象或训练期间生成的日志中提取这些值。
然后,可以使用 Matplotlib 等库直观呈现这些值在训练步数或周期内的变化。x 轴表示训练步数或周期,y 轴表示相应的损失值。
import matplotlib.pyplot as plt
# Access the log history
log_history = trainer.state.log_history
# Extract training / validation loss
train_losses = [log["loss"] for log in log_history if "loss" in log]
epoch_train = [log["epoch"] for log in log_history if "loss" in log]
eval_losses = [log["eval_loss"] for log in log_history if "eval_loss" in log]
epoch_eval = [log["epoch"] for log in log_history if "eval_loss" in log]
# Plot the training loss
plt.plot(epoch_train, train_losses, label="Training Loss")
plt.plot(epoch_eval, eval_losses, label="Validation Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title("Training and Validation Loss per Epoch")
plt.legend()
plt.grid(True)
plt.show()
此可视化图表有助于监控训练过程,并就超参数调整或提前停止做出明智的决策。
训练损失衡量的是模型在训练时所用数据上的误差,而验证损失衡量的是模型在之前未见过的一个单独数据集上的误差。同时监控这两个指标有助于检测过拟合(即模型在训练数据上表现良好,但在未见过的数据上表现不佳)。
- 验证损失 >> 训练损失:过拟合
- 验证损失 > 训练损失:出现一定程度的过拟合
- 验证损失 < 训练损失:存在一定程度的欠拟合
- 验证损失远低于训练损失:欠拟合
测试模型推理
训练完成后,您需要评估和测试模型。您可以从测试数据集中加载不同的样本,并根据这些样本评估模型。
对于此特定用例,最佳模型取决于偏好。有趣的是,我们通常所说的“过拟合”对于游戏 NPC 来说可能非常有用。这会迫使模型忘记一般信息,转而锁定其接受过训练的特定角色和特征,从而确保模型始终保持角色一致性。
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = checkpoint_dir
# Load Model
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto",
attn_implementation="eager"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
我们来加载测试数据集中的所有问题并生成输出。
from transformers import pipeline
# Load the model and tokenizer into the pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
def test(test_sample):
# Convert as test example into a prompt with the Gemma template
prompt = pipe.tokenizer.apply_chat_template(test_sample["messages"][:1], tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, disable_compile=True)
# Extract the user query and original answer
print(f"Question:\n{test_sample['messages'][0]['content']}")
print(f"Original Answer:\n{test_sample['messages'][1]['content']}")
print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}")
print("-"*80)
# Test with an unseen dataset
for item in dataset['test']:
test(item)
Device set to use cuda:0 Question: Do you know any jokes? Original Answer: A joke? k'tak Yez. A Terran, a Glarzon, and a pile of nutrient-pazte walk into a bar... Narg, I forget da rezt. Da punch-line waz zarcaztic. Generated Answer: Yez! Yez! Yez! Diz your Krush-tongs iz... k'tak... nice. Why you burn them with acid-flow? -------------------------------------------------------------------------------- Question: (Stands idle for too long) Original Answer: You'z broken, Terran? Or iz diz... 'meditation'? You look like you're trying to lay an egg. Generated Answer: Diz? Diz what you have for me... Zorp iz not for eating you. -------------------------------------------------------------------------------- Question: What do you think of my outfit? Original Answer: Iz very... pointy. Are you expecting to be attacked by zky-eelz? On Marz, dat would be zenzible. Generated Answer: My Zk-Zhip iz... nice. Very... home-baked. You bring me zlight-fruitez? -------------------------------------------------------------------------------- Question: It's raining. Original Answer: Gah! Da zky iz leaking again! Zorp will be in da zhelter until it ztopz being zo... wet. Diz iz no good for my jointz. Generated Answer: Diz? Diz iz da outpozt? -------------------------------------------------------------------------------- Question: I brought you a gift. Original Answer: A gift? For Zorp? k'tak It iz... a small rock. Very... rock-like. Zorp will put it with da other rockz. Thank you for da thought, Terran. Generated Answer: A genuine Martian Zcrap-fruit. Very... strange. Why you burn it with... k'tak... fire? --------------------------------------------------------------------------------
如果您尝试使用我们最初的通用提示,就会发现模型仍然会尝试以训练过的风格回答问题。在此示例中,过拟合和灾难性遗忘实际上对游戏 NPC 有益,因为 NPC 会开始忘记可能不适用的通用知识。对于其他类型的全模型微调(旨在将输出限制为特定数据格式)也是如此。
outputs = pipe([{"role": "user", "content": "Sorry, you are a game NPC."}], max_new_tokens=256, disable_compile=True)
print(outputs[0]['generated_text'][1]['content'])
Nameless. You... you z-mell like... wet plantz. Why you wear shiny piecez on your head?
总结与后续步骤
本教程介绍了如何使用 TRL 进行完整模型微调。接下来,请参阅以下文档: