Z tego przewodnika dowiesz się, jak dostosować model Gemma do niestandardowego zbioru danych obrazów i tekstów do zadania związanego z wizualizacją (generowanie opisów produktów) za pomocą Transformerów Hugging Face i TRL. Dowiesz się:
- Co to jest kwantyzowana adaptacja niskiego rzędu (QLoRA)
- Konfigurowanie środowiska programistycznego
- Tworzenie i przygotowywanie zbioru danych do dopracowywania zadań związanych ze wzrokiem maszynowym
- Dostrojenie Gemma za pomocą TRL i SFTTrainer
- Testowanie wnioskowania modelu i generowanie opisów produktów na podstawie obrazów i tekstu.
Co to jest kwantyzacja adaptacji niskiego rzędu
Ten przewodnik pokazuje, jak korzystać z zaadaptowanej kwantyzacji o niskim współczynniku, która stała się popularną metodą efektywnego dopracowywania modeli LLM, ponieważ zmniejsza wymagania dotyczące zasobów obliczeniowych przy jednoczesnym zachowaniu wysokiej wydajności. W QloRA wytrenowany wcześniej model jest kwantyzowany do 4-bitów, a wagi są zamrażane. Następnie dołączane są warstwy adaptera, które można trenować (LoRA), i tylko te warstwy są trenowane. Następnie wagi adaptera można scalić z modelem podstawowym lub zachować jako osobny adapter.
Konfigurowanie środowiska programistycznego
Pierwszym krokiem jest zainstalowanie bibliotek Hugging Face, w tym TRL, oraz zbiorów danych, aby dostosować model otwarty.
# Install Pytorch & other libraries
%pip install "torch>=2.4.0" tensorboard torchvision
# Install Gemma release branch from Hugging Face
%pip install "transformers>=4.51.3"
# Install Hugging Face libraries
%pip install --upgrade \
"datasets==3.3.2" \
"accelerate==1.4.0" \
"evaluate==0.4.3" \
"bitsandbytes==0.45.3" \
"trl==0.15.2" \
"peft==0.14.0" \
"pillow==11.1.0" \
protobuf \
sentencepiece
Zanim zaczniesz szkolenie, musisz zaakceptować warunki korzystania z usługi Gemma. Licencję możesz zaakceptować w Hugging Face, klikając przycisk Zgadzam się i uzyskaj dostęp do repozytorium na stronie modelu pod adresem: http://huggingface.co/google/gemma-3-4b-pt (lub na odpowiedniej stronie modelu w przypadku używanego przez Ciebie modelu Gemma obsługującego widzenie).
Po zaakceptowaniu licencji musisz mieć ważny token Hugging Face, aby uzyskać dostęp do modelu. Jeśli używasz Google Colab, możesz bezpiecznie korzystać z tokenu Hugging Face, korzystając z sekretów Colab. W przeciwnym razie możesz ustawić token bezpośrednio w metodzie login
. Podczas przesyłania modelu do Huba podczas trenowania upewnij się, że token ma też uprawnienia do zapisu.
from google.colab import userdata
from huggingface_hub import login
# Login into Hugging Face Hub
hf_token = userdata.get('HF_TOKEN') # If you are running inside a Google Colab
login(hf_token)
Tworzenie i przygotowywanie zbioru danych do dostrajania
Podczas dopracowywania LLM ważne jest, aby znać przypadek użycia i zadania, które chcesz wykonać. Pomaga to utworzyć zbiór danych, który posłuży do dokładnego dostosowania modelu. Jeśli nie masz jeszcze zdefiniowanego przypadku użycia, możesz wrócić do etapu projektowania.
W tym przewodniku omówiono następujący przypadek użycia:
- Dopracowanie modelu Gemma w celu generowania zwięzłych, zoptymalizowanych pod kątem SEO opisów produktów na potrzeby platformy e-commerce, które są dostosowane do wyszukiwania na urządzeniach mobilnych.
Ten przewodnik korzysta z danych philschmid/amazon-product-descriptions-vlm, czyli zbioru opisów produktów Amazon, w tym obrazów i kategorii produktów.
Model Hugging Face TRL obsługuje rozmowy multimodalne. Ważnym elementem jest rola „image”, która informuje klasę przetwarzania, że powinna wczytać obraz. Struktura powinna być następująca:
{"messages": [{"role": "system", "content": [{"type": "text", "text":"You are..."}]}, {"role": "user", "content": [{"type": "text", "text": "..."}, {"type": "image"}]}, {"role": "assistant", "content": [{"type": "text", "text": "..."}]}]}
{"messages": [{"role": "system", "content": [{"type": "text", "text":"You are..."}]}, {"role": "user", "content": [{"type": "text", "text": "..."}, {"type": "image"}]}, {"role": "assistant", "content": [{"type": "text", "text": "..."}]}]}
{"messages": [{"role": "system", "content": [{"type": "text", "text":"You are..."}]}, {"role": "user", "content": [{"type": "text", "text": "..."}, {"type": "image"}]}, {"role": "assistant", "content": [{"type": "text", "text": "..."}]}]}
Możesz teraz użyć biblioteki zbiorów danych Hugging Face, aby załadować zbiór danych i utworzyć szablon prompta, który połączy obraz, nazwę produktu i kategorię, a także dodać komunikat systemowy. Zbiór danych zawiera obrazy jako obiekty Pil.Image
.
from datasets import load_dataset
from PIL import Image
# System message for the assistant
system_message = "You are an expert product description writer for Amazon."
# User prompt that combines the user query and the schema
user_prompt = """Create a Short Product description based on the provided <PRODUCT> and <CATEGORY> and image.
Only return description. The description should be SEO optimized and for a better mobile search experience.
<PRODUCT>
{product}
</PRODUCT>
<CATEGORY>
{category}
</CATEGORY>
"""
# Convert dataset to OAI messages
def format_data(sample):
return {
"messages": [
{
"role": "system",
"content": [{"type": "text", "text": system_message}],
},
{
"role": "user",
"content": [
{
"type": "text",
"text": user_prompt.format(
product=sample["Product Name"],
category=sample["Category"],
),
},
{
"type": "image",
"image": sample["image"],
},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": sample["description"]}],
},
],
}
def process_vision_info(messages: list[dict]) -> list[Image.Image]:
image_inputs = []
# Iterate through each conversation
for msg in messages:
# Get content (ensure it's a list)
content = msg.get("content", [])
if not isinstance(content, list):
content = [content]
# Check each content element for images
for element in content:
if isinstance(element, dict) and (
"image" in element or element.get("type") == "image"
):
# Get the image and convert to RGB
if "image" in element:
image = element["image"]
else:
image = element
image_inputs.append(image.convert("RGB"))
return image_inputs
# Load dataset from the hub
dataset = load_dataset("philschmid/amazon-product-descriptions-vlm", split="train")
# Convert dataset to OAI messages
# need to use list comprehension to keep Pil.Image type, .mape convert image to bytes
dataset = [format_data(sample) for sample in dataset]
print(dataset[345]["messages"])
Dostrojenie Gemma za pomocą TRL i SFTTrainer
Możesz teraz dostosować model. Narzędzie Hugging Face TRL SFTTrainer ułatwia nadzorowanie dopracowywania otwartych modeli LLM. SFTTrainer
jest podklasą Trainer
z biblioteki transformers
i obsługuje te same funkcje, w tym rejestrowanie, ocenę i punkty kontrolne, ale zawiera też dodatkowe funkcje, takie jak:
- Formatowanie zbioru danych, w tym formaty konwersacyjne i instrukcyjne
- Trenowanie tylko na podstawie ukończonych zadań, z pominięciem promptów
- Pakowanie zbiorów danych w celu efektywniejszego trenowania
- obsługa dostrajania konkretnych parametrów (PEFT), w tym QloRA;
- Przygotowanie modelu i tokenizera do dokładnego dostrajania konwersacji (np. dodawanie tokenów specjalnych)
Poniższy kod wczytuje model Gemma i tokenizera z Hugging Face oraz inicjuje konfigurację kwantyzacji.
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
# Hugging Face model id
model_id = "google/gemma-3-4b-pt" # or `google/gemma-3-12b-pt`, `google/gemma-3-27-pt`
# Check if GPU benefits from bfloat16
if torch.cuda.get_device_capability()[0] < 8:
raise ValueError("GPU does not support bfloat16, please use a GPU that supports bfloat16.")
# Define model init arguments
model_kwargs = dict(
attn_implementation="eager", # Use "flash_attention_2" when running on Ampere or newer GPU
torch_dtype=torch.bfloat16, # What torch dtype to use, defaults to auto
device_map="auto", # Let torch decide how to load the model
)
# BitsAndBytesConfig int-4 config
model_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=model_kwargs["torch_dtype"],
bnb_4bit_quant_storage=model_kwargs["torch_dtype"],
)
# Load model and tokenizer
model = AutoModelForImageTextToText.from_pretrained(model_id, **model_kwargs)
processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it")
SFTTrainer
obsługuje wbudowaną integrację z peft
, co ułatwia skuteczne dostrajanie LLM za pomocą QLoRA. Wystarczy, że utworzysz LoraConfig
i przekażesz go trenerowi.
from peft import LoraConfig
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.05,
r=16,
bias="none",
target_modules="all-linear",
task_type="CAUSAL_LM",
modules_to_save=[
"lm_head",
"embed_tokens",
],
)
Zanim rozpoczniesz szkolenie, musisz zdefiniować parametr nadrzędny, którego chcesz użyć w funkcji SFTConfig
, oraz niestandardową funkcję collate_fn
, która będzie obsługiwać przetwarzanie wizualne. collate_fn
konwertuje wiadomości z tekstem i obrazami na format zrozumiały dla modelu.
from trl import SFTConfig
args = SFTConfig(
output_dir="gemma-product-description", # directory to save and repository id
num_train_epochs=1, # number of training epochs
per_device_train_batch_size=1, # batch size per device during training
gradient_accumulation_steps=4, # number of steps before performing a backward/update pass
gradient_checkpointing=True, # use gradient checkpointing to save memory
optim="adamw_torch_fused", # use fused adamw optimizer
logging_steps=5, # log every 5 steps
save_strategy="epoch", # save checkpoint every epoch
learning_rate=2e-4, # learning rate, based on QLoRA paper
bf16=True, # use bfloat16 precision
max_grad_norm=0.3, # max gradient norm based on QLoRA paper
warmup_ratio=0.03, # warmup ratio based on QLoRA paper
lr_scheduler_type="constant", # use constant learning rate scheduler
push_to_hub=True, # push model to hub
report_to="tensorboard", # report metrics to tensorboard
gradient_checkpointing_kwargs={
"use_reentrant": False
}, # use reentrant checkpointing
dataset_text_field="", # need a dummy field for collator
dataset_kwargs={"skip_prepare_dataset": True}, # important for collator
)
args.remove_unused_columns = False # important for collator
# Create a data collator to encode text and image pairs
def collate_fn(examples):
texts = []
images = []
for example in examples:
image_inputs = process_vision_info(example["messages"])
text = processor.apply_chat_template(
example["messages"], add_generation_prompt=False, tokenize=False
)
texts.append(text.strip())
images.append(image_inputs)
# Tokenize the texts and process the images
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
# The labels are the input_ids, and we mask the padding tokens and image tokens in the loss computation
labels = batch["input_ids"].clone()
# Mask image tokens
image_token_id = [
processor.tokenizer.convert_tokens_to_ids(
processor.tokenizer.special_tokens_map["boi_token"]
)
]
# Mask tokens for not being used in the loss computation
labels[labels == processor.tokenizer.pad_token_id] = -100
labels[labels == image_token_id] = -100
labels[labels == 262144] = -100
batch["labels"] = labels
return batch
Masz już wszystkie elementy potrzebne do utworzenia SFTTrainer
, aby rozpocząć trenowanie modelu.
from trl import SFTTrainer
trainer = SFTTrainer(
model=model,
args=args,
train_dataset=dataset,
peft_config=peft_config,
processing_class=processor,
data_collator=collate_fn,
)
Rozpocznij trenowanie, wywołując metodę train()
.
# Start training, the model will be automatically saved to the Hub and the output directory
trainer.train()
# Save the final model again to the Hugging Face Hub
trainer.save_model()
Zanim przetestujesz model, musisz zwolnić pamięć.
# free the memory again
del model
del trainer
torch.cuda.empty_cache()
Korzystając z QLoRA, trenujesz tylko adaptery, a nie cały model. Oznacza to, że podczas zapisywania modelu podczas trenowania zapisujesz tylko wagi adaptera, a nie cały model. Jeśli chcesz zapisać pełny model, co ułatwia jego używanie w ramach stert służących do obsługi, takich jak vLLM czy TGI, możesz scalić wagi adaptera z wagami modelu za pomocą metody merge_and_unload
, a następnie zapisać model za pomocą metody save_pretrained
. Dzięki temu zapisywany jest model domyślny, który może być używany do wnioskowania.
from peft import PeftModel
# Load Model base model
model = AutoModelForImageTextToText.from_pretrained(model_id, low_cpu_mem_usage=True)
# Merge LoRA and base model and save
peft_model = PeftModel.from_pretrained(model, args.output_dir)
merged_model = peft_model.merge_and_unload()
merged_model.save_pretrained("merged_model", safe_serialization=True, max_shard_size="2GB")
processor = AutoProcessor.from_pretrained(args.output_dir)
processor.save_pretrained("merged_model")
Testowanie wnioskowania modelu i generowanie opisów produktów
Po zakończeniu trenowania należy ocenić i przetestować model. Możesz wczytywać różne próbki ze zbioru danych testowego i ocenić model na ich podstawie.
import torch
# Load Model with PEFT adapter
model = AutoModelForImageTextToText.from_pretrained(
args.output_dir,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="eager",
)
processor = AutoProcessor.from_pretrained(args.output_dir)
Możesz przetestować wnioskowanie, podając nazwę, kategorię i zdjęcie produktu. sample
zawiera figurkę Marvela.
import requests
from PIL import Image
# Test sample with Product Name, Category and Image
sample = {
"product_name": "Hasbro Marvel Avengers-Serie Marvel Assemble Titan-Held, Iron Man, 30,5 cm Actionfigur",
"category": "Toys & Games | Toy Figures & Playsets | Action Figures",
"image": Image.open(requests.get("https://m.media-amazon.com/images/I/81+7Up7IWyL._AC_SY300_SX300_.jpg", stream=True).raw).convert("RGB")
}
def generate_description(sample, model, processor):
# Convert sample into messages and then apply the chat template
messages = [
{"role": "system", "content": [{"type": "text", "text": system_message}]},
{"role": "user", "content": [
{"type": "image","image": sample["image"]},
{"type": "text", "text": user_prompt.format(product=sample["product_name"], category=sample["category"])},
]},
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# Process the image and text
image_inputs = process_vision_info(messages)
# Tokenize the text and process the images
inputs = processor(
text=[text],
images=image_inputs,
padding=True,
return_tensors="pt",
)
# Move the inputs to the device
inputs = inputs.to(model.device)
# Generate the output
stop_token_ids = [processor.tokenizer.eos_token_id, processor.tokenizer.convert_tokens_to_ids("<end_of_turn>")]
generated_ids = model.generate(**inputs, max_new_tokens=256, top_p=1.0, do_sample=True, temperature=0.8, eos_token_id=stop_token_ids, disable_compile=True)
# Trim the generation and decode the output to text
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
# generate the description
description = generate_description(sample, model, processor)
print(description)
Podsumowanie i kolejne kroki
W tym samouczku pokazano, jak dostosowywać model Gemma do zadań związanych ze wzrokiem za pomocą TRL i QLoRA, w szczególności do generowania opisów produktów. Zapoznaj się z tymi dokumentami:
- Dowiedz się, jak generować tekst za pomocą modelu Gemma.
- Dowiedz się, jak dostosować model Gemma do zadań tekstowych za pomocą funkcji Hugging Face Transformers.
- Dowiedz się, jak przeprowadzić rozproszone dostrajanie i wykonywanie wnioskowania na modelu Gemma.
- Dowiedz się, jak uzyskiwać dostęp do otwartych modeli Gemma w Vertex AI.
- Dowiedz się, jak dostrajać Gemma za pomocą KerasNLP i wdrażać je w Vertex AI.