Model Gemini dapat diakses menggunakan library OpenAI (Python dan TypeScript/JavaScript) beserta REST API, dengan memperbarui tiga baris kode dan menggunakan kunci Gemini API Anda. Jika Anda belum menggunakan library OpenAI, sebaiknya panggil Gemini API secara langsung.
Python
from openai import OpenAI
client = OpenAI(
api_key="gemini_api_key",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-1.5-flash",
n=1,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "Explain to me how AI works"
}
]
)
print(response.choices[0].message)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "gemini_api_key",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
model: "gemini-1.5-flash",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{
role: "user",
content: "Explain to me how AI works",
},
],
});
console.log(response.choices[0].message);
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer gemini_api_key" \
-d '{
"model": "gemini-1.5-flash",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
]
}'
Streaming
Gemini API mendukung respons streaming.
Python
from openai import OpenAI
client = OpenAI(
api_key="gemini_api_key",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-1.5-flash",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream=True
)
for chunk in response:
print(chunk.choices[0].delta)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "gemini_api_key",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const completion = await openai.chat.completions.create({
model: "gemini-1.5-flash",
messages: [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream: true,
});
for await (const chunk of completion) {
console.log(chunk.choices[0].delta.content);
}
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer gemini_api_key" \
-d '{
"model": "gemini-1.5-flash",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
],
"stream": true
}'
Panggilan fungsi
Panggilan fungsi memudahkan Anda mendapatkan output data terstruktur dari model generatif dan didukung di Gemini API.
Python
from openai import OpenAI
client = OpenAI(
api_key="gemini_api_key",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
model="gemini-1.5-flash",
messages=messages,
tools=tools,
tool_choice="auto"
)
print(response)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "gemini_api_key",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}];
const tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
];
const response = await openai.chat.completions.create({
model: "gemini-1.5-flash",
messages: messages,
tools: tools,
tool_choice: "auto",
});
console.log(response);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer gemini_api_key" \
-d '{
"model": "gemini-1.5-flash",
"messages": [
{
"role": "user",
"content": "What'\''s the weather like in Chicago today?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto"
}'
Embeddings
Penyematan teks mengukur keterkaitan string teks dan dapat dibuat menggunakan Gemini API.
Python
from openai import OpenAI
client = OpenAI(
api_key="gemini_api_key",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.embeddings.create(
input="Your text string goes here",
model="text-embedding-004"
)
print(response.data[0].embedding)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "gemini_api_key",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const embedding = await openai.embeddings.create({
model: "text-embedding-004",
input: "Your text string goes here",
});
console.log(embedding);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer gemini_api_key" \
-d '{
"input": "Your text string goes here",
"model": "text-embedding-004"
}'
Batasan saat ini
Dukungan untuk library OpenAI masih dalam versi beta saat kami memperluas dukungan fitur. Fungsi berikut terbatas:
- Upload gambar menggunakan URL / Base64
- Output terstruktur
Jika ada pertanyaan tentang parameter yang didukung, fitur mendatang, atau mengalami masalah saat memulai Gemini, bergabunglah dengan Forum Developer kami.