Compatibilidad con OpenAI

Se puede acceder a los modelos de Gemini con las bibliotecas de OpenAI (Python y TypeScript/JavaScript) junto con la API de REST. Para ello, actualiza tres líneas de código y usa tu clave de API de Gemini. Si todavía no usas las bibliotecas de OpenAI, te recomendamos que llames a la API de Gemini directamente.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
    model="gemini-1.5-flash",
    n=1,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {
            "role": "user",
            "content": "Explain to me how AI works"
        }
    ]
)

print(response.choices[0].message)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

const response = await openai.chat.completions.create({
    model: "gemini-1.5-flash",
    messages: [
        { role: "system", content: "You are a helpful assistant." },
        {
            role: "user",
            content: "Explain to me how AI works",
        },
    ],
});

console.log(response.choices[0].message);

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-1.5-flash",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
    ]
    }'

Transmisión

La API de Gemini admite respuestas de transmisión.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
  model="gemini-1.5-flash",
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Hello!"}
  ],
  stream=True
)

for chunk in response:
    print(chunk.choices[0].delta)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const completion = await openai.chat.completions.create({
    model: "gemini-1.5-flash",
    messages: [
      {"role": "system", "content": "You are a helpful assistant."},
      {"role": "user", "content": "Hello!"}
    ],
    stream: true,
  });

  for await (const chunk of completion) {
    console.log(chunk.choices[0].delta.content);
  }
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-1.5-flash",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
    ],
    "stream": true
  }'

Llamada a función

Las llamadas a función te permiten obtener resultados de datos estructurados de los modelos generativos con mayor facilidad y son compatibles con la API de Gemini.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

tools = [
  {
    "type": "function",
    "function": {
      "name": "get_weather",
      "description": "Get the weather in a given location",
      "parameters": {
        "type": "object",
        "properties": {
          "location": {
            "type": "string",
            "description": "The city and state, e.g. Chicago, IL",
          },
          "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
        },
        "required": ["location"],
      },
    }
  }
]

messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
  model="gemini-1.5-flash",
  messages=messages,
  tools=tools,
  tool_choice="auto"
)

print(response)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}];
  const tools = [
      {
        "type": "function",
        "function": {
          "name": "get_weather",
          "description": "Get the weather in a given location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {
                "type": "string",
                "description": "The city and state, e.g. Chicago, IL",
              },
              "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
            },
            "required": ["location"],
          },
        }
      }
  ];

  const response = await openai.chat.completions.create({
    model: "gemini-1.5-flash",
    messages: messages,
    tools: tools,
    tool_choice: "auto",
  });

  console.log(response);
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
  "model": "gemini-1.5-flash",
  "messages": [
    {
      "role": "user",
      "content": "What'\''s the weather like in Chicago today?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
          "type": "object",
          "properties": {
            "location": {
              "type": "string",
              "description": "The city and state, e.g. Chicago, IL"
            },
            "unit": {
              "type": "string",
              "enum": ["celsius", "fahrenheit"]
            }
          },
          "required": ["location"]
        }
      }
    }
  ],
  "tool_choice": "auto"
}'

Comprensión de imágenes

Los modelos de Gemini son multimodales de forma nativa y proporcionan el mejor rendimiento de su clase en muchas tareas de visión comunes.

Python

import base64
from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

# Function to encode the image
def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')

# Getting the base64 string
base64_image = encode_image("Path/to/agi/image.jpeg")

response = client.chat.completions.create(
  model="gemini-1.5-flash",
  messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What is in this image?",
        },
        {
          "type": "image_url",
          "image_url": {
            "url":  f"data:image/jpeg;base64,{base64_image}"
          },
        },
      ],
    }
  ],
)

print(response.choices[0])

Node.js

import OpenAI from "openai";
import fs from 'fs/promises';

const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function encodeImage(imagePath) {
  try {
    const imageBuffer = await fs.readFile(imagePath);
    return imageBuffer.toString('base64');
  } catch (error) {
    console.error("Error encoding image:", error);
    return null;
  }
}

async function main() {
  const imagePath = "Path/to/agi/image.jpeg";
  const base64Image = await encodeImage(imagePath);

  const messages = [
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What is in this image?",
        },
        {
          "type": "image_url",
          "image_url": {
            "url": `data:image/jpeg;base64,${base64Image}`
          },
        },
      ],
    }
  ];

  try {
    const response = await openai.chat.completions.create({
      model: "gemini-1.5-flash",
      messages: messages,
    });

    console.log(response.choices[0]);
  } catch (error) {
    console.error("Error calling Gemini API:", error);
  }
}

main();

REST

bash -c '
  base64_image=$(base64 -i "Path/to/agi/image.jpeg");
  curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer GEMINI_API_KEY" \
    -d "{
      \"model\": \"gemini-1.5-flash\",
      \"messages\": [
        {
          \"role\": \"user\",
          \"content\": [
            { \"type\": \"text\", \"text\": \"What is in this image?\" },
            {
              \"type\": \"image_url\",
              \"image_url\": { \"url\": \"data:image/jpeg;base64,${base64_image}\" }
            }
          ]
        }
      ]
    }"
'

Resultados estructurados

Los modelos de Gemini pueden generar objetos JSON en cualquier estructura que definas.

Python

from pydantic import BaseModel
from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

class CalendarEvent(BaseModel):
    name: str
    date: str
    participants: list[str]

completion = client.beta.chat.completions.parse(
    model="gemini-1.5-flash",
    messages=[
        {"role": "system", "content": "Extract the event information."},
        {"role": "user", "content": "John and Susan are going to an AI conference on Friday."},
    ],
    response_format=CalendarEvent,
)

print(completion.choices[0].message.parsed)

Node.js

import OpenAI from "openai";
import { zodResponseFormat } from "openai/helpers/zod";
import { z } from "zod";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai"
});

const CalendarEvent = z.object({
  name: z.string(),
  date: z.string(),
  participants: z.array(z.string()),
});

const completion = await openai.beta.chat.completions.parse({
  model: "gemini-1.5-flash",
  messages: [
    { role: "system", content: "Extract the event information." },
    { role: "user", content: "John and Susan are going to an AI conference on Friday" },
  ],
  response_format: zodResponseFormat(CalendarEvent, "event"),
});

const event = completion.choices[0].message.parsed;
console.log(event);

Incorporaciones

Las incorporaciones de texto miden la relación entre cadenas de texto y se pueden generar con la API de Gemini.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.embeddings.create(
    input="Your text string goes here",
    model="text-embedding-004"
)

print(response.data[0].embedding)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const embedding = await openai.embeddings.create({
    model: "text-embedding-004",
    input: "Your text string goes here",
  });

  console.log(embedding);
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "input": "Your text string goes here",
    "model": "text-embedding-004"
  }'

Limitaciones actuales

La compatibilidad con las bibliotecas de OpenAI aún está en versión beta mientras extendemos la compatibilidad con las funciones.

Si tienes preguntas sobre los parámetros admitidos, las próximas funciones o tienes algún problema para comenzar a usar Gemini, únete a nuestro Foro para desarrolladores.