Compatibilité OpenAI

Les modèles Gemini sont accessibles à l'aide des bibliothèques OpenAI (Python et TypeScript/JavaScript) ainsi que de l'API REST, en mettant à jour trois lignes de code et en utilisant votre clé API Gemini. Si vous n'utilisez pas déjà les bibliothèques OpenAI, nous vous recommandons d'appeler directement l'API Gemini.

Python

from openai import OpenAI

client = OpenAI(
    api_key="gemini_api_key",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
    model="gemini-1.5-flash",
    n=1,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {
            "role": "user",
            "content": "Explain to me how AI works"
        }
    ]
)

print(response.choices[0].message)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "gemini_api_key",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

const response = await openai.chat.completions.create({
    model: "gemini-1.5-flash",
    messages: [
        { role: "system", content: "You are a helpful assistant." },
        {
            role: "user",
            content: "Explain to me how AI works",
        },
    ],
});

console.log(response.choices[0].message);

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer gemini_api_key" \
-d '{
    "model": "gemini-1.5-flash",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
    ]
    }'

Streaming

L'API Gemini est compatible avec les réponses en streaming.

Python

from openai import OpenAI

client = OpenAI(
    api_key="gemini_api_key",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
  model="gemini-1.5-flash",
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Hello!"}
  ],
  stream=True
)

for chunk in response:
    print(chunk.choices[0].delta)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "gemini_api_key",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const completion = await openai.chat.completions.create({
    model: "gemini-1.5-flash",
    messages: [
      {"role": "system", "content": "You are a helpful assistant."},
      {"role": "user", "content": "Hello!"}
    ],
    stream: true,
  });

  for await (const chunk of completion) {
    console.log(chunk.choices[0].delta.content);
  }
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer gemini_api_key" \
-d '{
    "model": "gemini-1.5-flash",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
    ],
    "stream": true
  }'

Appel de fonction

L'appel de fonction vous permet d'obtenir plus facilement des sorties de données structurées à partir de modèles génératifs. Il est compatible avec l'API Gemini.

Python

from openai import OpenAI

client = OpenAI(
    api_key="gemini_api_key",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

tools = [
  {
    "type": "function",
    "function": {
      "name": "get_weather",
      "description": "Get the weather in a given location",
      "parameters": {
        "type": "object",
        "properties": {
          "location": {
            "type": "string",
            "description": "The city and state, e.g. Chicago, IL",
          },
          "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
        },
        "required": ["location"],
      },
    }
  }
]

messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
  model="gemini-1.5-flash",
  messages=messages,
  tools=tools,
  tool_choice="auto"
)

print(response)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "gemini_api_key",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}];
  const tools = [
      {
        "type": "function",
        "function": {
          "name": "get_weather",
          "description": "Get the weather in a given location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {
                "type": "string",
                "description": "The city and state, e.g. Chicago, IL",
              },
              "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
            },
            "required": ["location"],
          },
        }
      }
  ];

  const response = await openai.chat.completions.create({
    model: "gemini-1.5-flash",
    messages: messages,
    tools: tools,
    tool_choice: "auto",
  });

  console.log(response);
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer gemini_api_key" \
-d '{
  "model": "gemini-1.5-flash",
  "messages": [
    {
      "role": "user",
      "content": "What'\''s the weather like in Chicago today?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
          "type": "object",
          "properties": {
            "location": {
              "type": "string",
              "description": "The city and state, e.g. Chicago, IL"
            },
            "unit": {
              "type": "string",
              "enum": ["celsius", "fahrenheit"]
            }
          },
          "required": ["location"]
        }
      }
    }
  ],
  "tool_choice": "auto"
}'

Embeddings

Les embeddings de texte mesurent la relation entre des chaînes de texte et peuvent être générés à l'aide de l'API Gemini.

Python

from openai import OpenAI

client = OpenAI(
    api_key="gemini_api_key",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.embeddings.create(
    input="Your text string goes here",
    model="text-embedding-004"
)

print(response.data[0].embedding)

Node.js

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "gemini_api_key",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const embedding = await openai.embeddings.create({
    model: "text-embedding-004",
    input: "Your text string goes here",
  });

  console.log(embedding);
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer gemini_api_key" \
-d '{
    "input": "Your text string goes here",
    "model": "text-embedding-004"
  }'

Limites actuelles

La prise en charge des bibliothèques OpenAI est toujours en version bêta pendant que nous étoffons la compatibilité des fonctionnalités. Les fonctionnalités suivantes sont limitées:

Si vous avez des questions sur les paramètres compatibles ou les fonctionnalités à venir, ou si vous rencontrez des problèmes lors de la mise en route de Gemini, rejoignez notre forum des développeurs.