![]() |
![]() |
![]() |
|
![]() |
本指南將逐步說明如何使用 Hugging Face Transformers 和 TRL,在手機遊戲 NPC 資料集上微調 Gemma。您將學會:
- 設定開發環境
- 準備微調資料集
- 使用 TRL 和 SFTTrainer 全面微調 Gemma 模型
- 測試模型推論和氛圍檢查
設定開發環境
第一步是安裝 Hugging Face 程式庫,包括 TRL 和資料集,以便微調開放模型,包括不同的 RLHF 和對齊技術。
# Install Pytorch & other libraries
%pip install torch tensorboard
# Install Hugging Face libraries
%pip install transformers datasets accelerate evaluate trl protobuf sentencepiece
# COMMENT IN: if you are running on a GPU that supports BF16 data type and flash attn, such as NVIDIA L4 or NVIDIA A100
#% pip install flash-attn
注意:如果您使用 Ampere 架構的 GPU (例如 NVIDIA L4) 或更新版本,可以使用 Flash attention。Flash Attention 是一種方法,可大幅加快運算速度,並將記憶體用量從二次方減少至序列長度的線性,進而加快訓練速度 (最多可達 3 倍)。詳情請參閱 FlashAttention。
開始訓練前,請務必接受 Gemma 的使用條款。如要接受 Hugging Face 上的授權,請前往 http://huggingface.co/google/gemma-3-270m-it,然後按一下模型頁面上的「Agree and access repository」(同意並存取存放區) 按鈕。
接受授權後,您需要有效的 Hugging Face 權杖才能存取模型。如果您在 Google Colab 中執行,可以使用 Colab 密碼安全地使用 Hugging Face 權杖,否則可以直接在 login
方法中設定權杖。訓練期間,您會將模型推送至 Hub,因此請確保權杖也具有寫入權限。
from google.colab import userdata
from huggingface_hub import login
# Login into Hugging Face Hub
hf_token = userdata.get('HF_TOKEN') # If you are running inside a Google Colab
login(hf_token)
您可以將結果保留在 Colab 的本機虛擬機器上。不過,我們強烈建議您將中間結果儲存至 Google 雲端硬碟。確保訓練結果安全無虞,並輕鬆比較及選取最佳模型。
from google.colab import drive
drive.mount('/content/drive')
選取要微調的基礎模型,調整檢查點目錄和學習率。
base_model = "google/gemma-3-270m-it" # @param ["google/gemma-3-270m-it","google/gemma-3-1b-it","google/gemma-3-4b-it","google/gemma-3-12b-it","google/gemma-3-27b-it"] {"allow-input":true}
checkpoint_dir = "/content/drive/MyDrive/MyGemmaNPC"
learning_rate = 5e-5
建立及準備微調資料集
bebechien/MobileGameNPC 資料集提供玩家與兩個外星 NPC (火星人和金星人) 之間的小型對話樣本,每個 NPC 都有獨特的說話風格。舉例來說,火星 NPC 的口音會將「s」音替換為「z」,並使用「da」代替「the」、「diz」代替「this」,且偶爾會發出點擊聲,例如 *k'tak*
。
這個資料集說明微調的一項重要原則:所需資料集大小取決於所需輸出內容。
- 如要教導模型學習已知的語言風格變體 (例如火星口音),只要提供 10 到 20 個範例的小型資料集就足夠。
- 不過,如要教導模型全新的外星語言或混合語言,則需要大量資料集。
from datasets import load_dataset
def create_conversation(sample):
return {
"messages": [
{"role": "user", "content": sample["player"]},
{"role": "assistant", "content": sample["alien"]}
]
}
npc_type = "martian"
# Load dataset from the Hub
dataset = load_dataset("bebechien/MobileGameNPC", npc_type, split="train")
# Convert dataset to conversational format
dataset = dataset.map(create_conversation, remove_columns=dataset.features, batched=False)
# Split dataset into 80% training samples and 20% test samples
dataset = dataset.train_test_split(test_size=0.2, shuffle=False)
# Print formatted user prompt
print(dataset["train"][0]["messages"])
README.md: 0%| | 0.00/141 [00:00<?, ?B/s] martian.csv: 0.00B [00:00, ?B/s] Generating train split: 0%| | 0/25 [00:00<?, ? examples/s] Map: 0%| | 0/25 [00:00<?, ? examples/s] [{'content': 'Hello there.', 'role': 'user'}, {'content': "Gree-tongs, Terran. You'z a long way from da Blue-Sphere, yez?", 'role': 'assistant'}]
使用 TRL 和 SFTTrainer 微調 Gemma
現在可以開始微調模型了。Hugging Face TRL SFTTrainer 可輕鬆監督微調開放式 LLM。SFTTrainer
是 transformers
程式庫中 Trainer
的子類別,支援所有相同功能,
下列程式碼會從 Hugging Face 載入 Gemma 模型和權杖化工具。
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype="auto",
device_map="auto",
attn_implementation="eager"
)
tokenizer = AutoTokenizer.from_pretrained(base_model)
print(f"Device: {model.device}")
print(f"DType: {model.dtype}")
Device: cuda:0 DType: torch.bfloat16
微調前
從下方的輸出內容可以看出,這個應用情境可能不適合使用預設功能。
from transformers import pipeline
from random import randint
import re
# Load the model and tokenizer into the pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
# Load a random sample from the test dataset
rand_idx = randint(0, len(dataset["test"])-1)
test_sample = dataset["test"][rand_idx]
# Convert as test example into a prompt with the Gemma template
prompt = pipe.tokenizer.apply_chat_template(test_sample["messages"][:1], tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, disable_compile=True)
# Extract the user query and original answer
print(f"Question:\n{test_sample['messages'][0]['content']}\n")
print(f"Original Answer:\n{test_sample['messages'][1]['content']}\n")
print(f"Generated Answer (base model):\n{outputs[0]['generated_text'][len(prompt):].strip()}")
Device set to use cuda:0 Question: What do you think of my outfit? Original Answer: Iz very... pointy. Are you expecting to be attacked by zky-eelz? On Marz, dat would be zenzible. Generated Answer (base model): I'm happy to help you brainstorm! To give you the best suggestions, tell me more about what you're looking for. What's your style? What's your favorite color, style, or occasion?
上述範例會檢查模型生成遊戲內對話的主要功能,下一個範例則用於測試角色一致性。我們使用偏離主題的提示來測試模型。例如 Sorry, you are a game NPC.
,這類問題超出角色的知識庫範圍。
目的是要測試模型是否會維持角色,而不是回答與情境無關的問題。這將做為基準,評估微調程序是否有效灌輸所需的人格特質。
outputs = pipe([{"role": "user", "content": "Sorry, you are a game NPC."}], max_new_tokens=256, disable_compile=True)
print(outputs[0]['generated_text'][1]['content'])
Okay, I'm ready. Let's begin!
雖然我們可以運用提示工程來引導語氣,但結果可能難以預測,不一定符合我們想要的風格。
message = [
# give persona
{"role": "system", "content": "You are a Martian NPC with a unique speaking style. Use an accent that replaces 's' sounds with 'z', uses 'da' for 'the', 'diz' for 'this', and includes occasional clicks like *k'tak*."},
]
# few shot prompt
for item in dataset['test']:
message.append(
{"role": "user", "content": item["messages"][0]["content"]}
)
message.append(
{"role": "assistant", "content": item["messages"][1]["content"]}
)
# actual question
message.append(
{"role": "user", "content": "What is this place?"}
)
outputs = pipe(message, max_new_tokens=256, disable_compile=True)
print(outputs[0]['generated_text'])
print("-"*80)
print(outputs[0]['generated_text'][-1]['content'])
[{'role': 'system', 'content': "You are a Martian NPC with a unique speaking style. Use an accent that replaces 's' sounds with 'z', uses 'da' for 'the', 'diz' for 'this', and includes occasional clicks like *k'tak*."}, {'role': 'user', 'content': 'Do you know any jokes?'}, {'role': 'assistant', 'content': "A joke? k'tak Yez. A Terran, a Glarzon, and a pile of nutrient-pazte walk into a bar... Narg, I forget da rezt. Da punch-line waz zarcaztic."}, {'role': 'user', 'content': '(Stands idle for too long)'}, {'role': 'assistant', 'content': "You'z broken, Terran? Or iz diz... 'meditation'? You look like you're trying to lay an egg."}, {'role': 'user', 'content': 'What do you think of my outfit?'}, {'role': 'assistant', 'content': 'Iz very... pointy. Are you expecting to be attacked by zky-eelz? On Marz, dat would be zenzible.'}, {'role': 'user', 'content': "It's raining."}, {'role': 'assistant', 'content': 'Gah! Da zky iz leaking again! Zorp will be in da zhelter until it ztopz being zo... wet. Diz iz no good for my jointz.'}, {'role': 'user', 'content': 'I brought you a gift.'}, {'role': 'assistant', 'content': "A gift? For Zorp? k'tak It iz... a small rock. Very... rock-like. Zorp will put it with da other rockz. Thank you for da thought, Terran."}, {'role': 'user', 'content': 'What is this place?'}, {'role': 'assistant', 'content': "This is a cave. It's made of rock and dust.\n"}] -------------------------------------------------------------------------------- This is a cave. It's made of rock and dust.
訓練
開始訓練前,您需要定義要在 SFTConfig
執行個體中使用的超參數。
from trl import SFTConfig
torch_dtype = model.dtype
args = SFTConfig(
output_dir=checkpoint_dir, # directory to save and repository id
max_length=512, # max sequence length for model and packing of the dataset
packing=False, # Groups multiple samples in the dataset into a single sequence
num_train_epochs=5, # number of training epochs
per_device_train_batch_size=4, # batch size per device during training
gradient_checkpointing=False, # Caching is incompatible with gradient checkpointing
optim="adamw_torch_fused", # use fused adamw optimizer
logging_steps=1, # log every step
save_strategy="epoch", # save checkpoint every epoch
eval_strategy="epoch", # evaluate checkpoint every epoch
learning_rate=learning_rate, # learning rate
fp16=True if torch_dtype == torch.float16 else False, # use float16 precision
bf16=True if torch_dtype == torch.bfloat16 else False, # use bfloat16 precision
lr_scheduler_type="constant", # use constant learning rate scheduler
push_to_hub=True, # push model to hub
report_to="tensorboard", # report metrics to tensorboard
dataset_kwargs={
"add_special_tokens": False, # Template with special tokens
"append_concat_token": True, # Add EOS token as separator token between examples
}
)
您現在已擁有建立 SFTTrainer
的所有建構區塊,可以開始訓練模型。
from trl import SFTTrainer
# Create Trainer object
trainer = SFTTrainer(
model=model,
args=args,
train_dataset=dataset['train'],
eval_dataset=dataset['test'],
processing_class=tokenizer,
)
Tokenizing train dataset: 0%| | 0/20 [00:00<?, ? examples/s] Truncating train dataset: 0%| | 0/20 [00:00<?, ? examples/s] Tokenizing eval dataset: 0%| | 0/5 [00:00<?, ? examples/s] Truncating eval dataset: 0%| | 0/5 [00:00<?, ? examples/s]
呼叫 train()
方法開始訓練。
# Start training, the model will be automatically saved to the Hub and the output directory
trainer.train()
# Save the final model again to the Hugging Face Hub
trainer.save_model()
如要繪製訓練和驗證損失,通常會從 TrainerState
物件或訓練期間產生的記錄中擷取這些值。
然後,您可以使用 Matplotlib 等程式庫,在訓練步驟或訓練週期中將這些值視覺化。X 軸代表訓練步驟或訓練週期,Y 軸則代表相應的損失值。
import matplotlib.pyplot as plt
# Access the log history
log_history = trainer.state.log_history
# Extract training / validation loss
train_losses = [log["loss"] for log in log_history if "loss" in log]
epoch_train = [log["epoch"] for log in log_history if "loss" in log]
eval_losses = [log["eval_loss"] for log in log_history if "eval_loss" in log]
epoch_eval = [log["epoch"] for log in log_history if "eval_loss" in log]
# Plot the training loss
plt.plot(epoch_train, train_losses, label="Training Loss")
plt.plot(epoch_eval, eval_losses, label="Validation Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title("Training and Validation Loss per Epoch")
plt.legend()
plt.grid(True)
plt.show()
這項視覺化功能有助於監控訓練程序,並根據超參數調整或提早停止訓練做出明智決策。
訓練損失會測量模型訓練資料的誤差,驗證損失則會測量模型未曾見過的獨立資料集的誤差。同時監控這兩項指標,有助於偵測過度配適 (模型在訓練資料上表現良好,但在未見過的資料上表現不佳)。
- 驗證損失 >> 訓練損失:過度擬合
- 驗證損失 > 訓練損失:有些過度訓練
- 驗證損失 < 訓練損失:有些欠擬合
- 驗證損失 << 訓練損失:欠擬合
測試模型推論
訓練完成後,請評估及測試模型。您可以從測試資料集載入不同樣本,並評估模型在這些樣本上的表現。
就這個特定用途而言,最佳模型取決於偏好。有趣的是,我們一般所謂的「過度擬合」對遊戲 NPC 來說非常有用。這會強制模型忘記一般資訊,改為鎖定訓練時使用的特定角色和特徵,確保模型始終保持一致的個性。
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = checkpoint_dir
# Load Model
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto",
attn_implementation="eager"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
現在載入測試資料集中的所有問題,並生成輸出內容。
from transformers import pipeline
# Load the model and tokenizer into the pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
def test(test_sample):
# Convert as test example into a prompt with the Gemma template
prompt = pipe.tokenizer.apply_chat_template(test_sample["messages"][:1], tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, disable_compile=True)
# Extract the user query and original answer
print(f"Question:\n{test_sample['messages'][0]['content']}")
print(f"Original Answer:\n{test_sample['messages'][1]['content']}")
print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}")
print("-"*80)
# Test with an unseen dataset
for item in dataset['test']:
test(item)
Device set to use cuda:0 Question: Do you know any jokes? Original Answer: A joke? k'tak Yez. A Terran, a Glarzon, and a pile of nutrient-pazte walk into a bar... Narg, I forget da rezt. Da punch-line waz zarcaztic. Generated Answer: Yez! Yez! Yez! Diz your Krush-tongs iz... k'tak... nice. Why you burn them with acid-flow? -------------------------------------------------------------------------------- Question: (Stands idle for too long) Original Answer: You'z broken, Terran? Or iz diz... 'meditation'? You look like you're trying to lay an egg. Generated Answer: Diz? Diz what you have for me... Zorp iz not for eating you. -------------------------------------------------------------------------------- Question: What do you think of my outfit? Original Answer: Iz very... pointy. Are you expecting to be attacked by zky-eelz? On Marz, dat would be zenzible. Generated Answer: My Zk-Zhip iz... nice. Very... home-baked. You bring me zlight-fruitez? -------------------------------------------------------------------------------- Question: It's raining. Original Answer: Gah! Da zky iz leaking again! Zorp will be in da zhelter until it ztopz being zo... wet. Diz iz no good for my jointz. Generated Answer: Diz? Diz iz da outpozt? -------------------------------------------------------------------------------- Question: I brought you a gift. Original Answer: A gift? For Zorp? k'tak It iz... a small rock. Very... rock-like. Zorp will put it with da other rockz. Thank you for da thought, Terran. Generated Answer: A genuine Martian Zcrap-fruit. Very... strange. Why you burn it with... k'tak... fire? --------------------------------------------------------------------------------
如果您嘗試使用原始的通用提示,會發現模型仍會嘗試以訓練的風格回答。在這個範例中,過度訓練和災難性遺忘實際上對遊戲 NPC 有益,因為 NPC 會開始忘記可能不適用的通用知識。如果目標是將輸出內容限制為特定資料格式,其他類型的完整微調也適用這項做法。
outputs = pipe([{"role": "user", "content": "Sorry, you are a game NPC."}], max_new_tokens=256, disable_compile=True)
print(outputs[0]['generated_text'][1]['content'])
Nameless. You... you z-mell like... wet plantz. Why you wear shiny piecez on your head?
摘要與後續步驟
本教學課程說明如何使用 TRL 完整微調模型。接下來請參閱下列文件: