ai.google.dev'de görüntüleyin | Google Colab'de çalıştır | Vertex AI'da aç | Kaynağı GitHub'da görüntüle |
RecurrentGemmarecurrentgemma
JAXChexOptax Doğrudan bu not defterinde Flax kullanılmasa da Gemma'yı oluşturmak için Flax kullanılmıştır.
recurrentgemma
kitaplığı JAX, Flax, Orbax (kontrol noktası gibi eğitim yardımcı programları için JAX tabanlı bir kitaplık) ve SentencePiece (jeton oluşturucu/detokenizer kitaplığı) ile yazılmıştır.
Bu not defteri, Google Colab'de T4 GPU ile çalışabilir (Düzenle > Not defteri ayarları > Donanım hızlandırıcı'nın altında T4 GPU'yu seçin).
Kurulum
Aşağıdaki bölümlerde, model erişimi, API anahtarı alma ve not defteri çalışma zamanını yapılandırma da dahil olmak üzere bir not defterini RecurrentGemma modelini kullanmak üzere hazırlama adımları açıklanmaktadır.
Gemma için Kaggle erişimini ayarlama
Bu eğiticiyi tamamlamak için önce birkaç istisna dışında Gemma kurulumuna benzer kurulum talimatlarını uygulamanız gerekir:
- kaggle.com adresinden RecurrentGemma'ya (Gemma yerine) erişin.
- RecurrentGemma modelini çalıştırmak için yeterli kaynağa sahip bir Colab çalışma zamanı seçin.
- Kaggle kullanıcı adı ve API anahtarı oluşturup yapılandırın.
RecurrentGemma kurulumunu tamamladıktan sonra, Colab ortamınız için ortam değişkenlerini ayarlayacağınız bir sonraki bölüme geçin.
Ortam değişkenlerini ayarlama
KAGGLE_USERNAME
ve KAGGLE_KEY
için ortam değişkenlerini ayarlayın. "Erişim izni verilsin mi?" sorusuyla karşılaştığınızda gizli erişim izni vermeyi kabul edin.
import os
from google.colab import userdata # `userdata` is a Colab API.
os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')
recurrentgemma
kitaplığını yükle
Ücretsiz Colab donanım hızlandırma özelliği şu anda bu not defterini çalıştırmak için yetersiz. Colab Pay As You Go veya Colab Pro kullanıyorsanız Düzenle'yi tıklayın > Not defteri ayarları > A100 GPU > seçeneğini belirleyin Donanım hızlandırmayı etkinleştirmek için Kaydet'i seçin.
Ardından, github.com/google-deepmind/recurrentgemma
üzerinden Google DeepMind recurrentgemma
kitaplığını yüklemeniz gerekir. "pip'in bağımlılık çözümleyicisi" hatası alırsanız genellikle bunu göz ardı edebilirsiniz.
pip install -q git+https://github.com/google-deepmind/recurrentgemma.git
Kitaplıkları içe aktar
Bu not defteri; Flax (nöral ağlar için), çekirdek JAX, SentencePiece (tokenleştirme için), Chex (güvenilir JAX kodu yazmaya yönelik yardımcı program kitaplığı), Optax (gradyan işleme ve optimizasyon kitaplığı) ve TensorFlow veri kümeleri kullanır.
import pathlib
from typing import Any, Mapping, Iterator
import enum
import functools
import chex
import jax
import jax.numpy as jnp
import optax
import tensorflow as tf
import tensorflow_datasets as tfds
import sentencepiece as spm
from recurrentgemma import jax as recurrentgemma
RecurrentGemma modelini yükleme
- Üç bağımsız değişken alan
kagglehub.model_download
ile RecurrentGemma modelini yükleyin:
handle
: Kaggle'ın model tutma yeripath
: (İsteğe bağlı dize) Yerel yolforce_download
: (İsteğe bağlı boole) Modeli yeniden indirmeye zorlar
import kagglehub
RECURRENTGEMMA_PATH = kagglehub.model_download(f'google/recurrentgemma/flax/{RECURRENTGEMMA_VARIANT}')
RECURRENTGEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
Downloading from https://www.kaggle.com/api/v1/models/google/recurrentgemma/flax/2b-it/1/download... 100%|██████████| 3.85G/3.85G [00:50<00:00, 81.5MB/s] Extracting model files...
print('RECURRENTGEMMA_VARIANT:', RECURRENTGEMMA_VARIANT)
RECURRENTGEMMA_VARIANT: 2b-it
- Model ağırlıklarının ve belirteç oluşturucunun konumunu kontrol edin, ardından yol değişkenlerini ayarlayın. Jeton oluşturucu dizini, modeli indirdiğiniz ana dizinde, model ağırlıkları ise bir alt dizinde yer alır. Örneğin:
tokenizer.model
dosyası/LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1
klasöründe yer alır.)- Model kontrol noktası
/LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1/2b-it
konumunda olacaktır.)
CKPT_PATH = os.path.join(RECURRENTGEMMA_PATH, RECURRENTGEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(RECURRENTGEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/2b-it TOKENIZER_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/tokenizer.model
MTNT veri kümesini ve Gemma jeton oluşturucuyu yükleme ve hazırlama
TensorFlow Datasets'ten erişilebilen MTNT (Machine Translation of Noisy Text) veri kümesini kullanacaksınız.
MTNT veri kümesinin İngilizce-Fransızca veri kümesi kısmını indirin ve ardından iki örnek örneği alın. Veri kümesindeki her örnek iki giriş içerir: src
: orijinal İngilizce cümle; ve dst
: karşılık gelen Fransızca çeviri.
ds = tfds.load("mtnt/en-fr", split="train")
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0... Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s] Extraction completed...: 0 file [00:00, ? file/s] Generating splits...: 0%| | 0/3 [00:00<?, ? splits/s] Generating train examples...: 0%| | 0/35692 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-train.tfrecord*...: 0%| … Generating test examples...: 0%| | 0/1020 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-test.tfrecord*...: 0%| |… Generating valid examples...: 0%| | 0/811 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-valid.tfrecord*...: 0%| … Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data. Example 0: dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".' src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.' Example 1: dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?" src: b'Is Kameron a Little Salty About Her Lack of Air Time?'
sentencepiece.SentencePieceProcessor
kullanılarak oluşturulan Gemma jeton oluşturucuyu yükleyin:
vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
İngilizce-Fransızca çeviri görevi için SentencePieceProcessor
aracını özelleştirin. RecurrentGemma (Griffin) modelinin İngilizce bölümüne ince ayar yapacağınız için, aşağıdakiler gibi birkaç ayarlama yapmanız gerekir:
Giriş öneki: Her girişe ortak bir önek eklenmesi çeviri görevini bildirir. Örneğin,
Translate this into French: [INPUT_SENTENCE]
gibi bir öneke sahip bir istem kullanabilirsiniz.Çeviri başlangıç soneki: Her istemin sonuna bir son ek eklenmesi, Gemma modeline çeviri işleminin tam olarak ne zaman başlayacağını bildirir. İşi yeni bir satır alacaktır.
Dil modeli jetonları: RecurrentGemma (Griffin) modelleri, "dizinin başlangıcı" olmasını bekler başına koyabilirsiniz. Benzer şekilde, bir "sıra sonu" eklemeniz gerekir belirtmelisiniz.
SentencePieceProcessor
öğesinin etrafında aşağıdaki gibi bir özel sarmalayıcı oluşturun:
class GriffinTokenizer:
"""A custom wrapper around a SentencePieceProcessor."""
def __init__(self, spm_processor: spm.SentencePieceProcessor):
self._spm_processor = spm_processor
@property
def pad_id(self) -> int:
"""Fast access to the pad ID."""
return self._spm_processor.pad_id()
def tokenize(
self,
example: str | bytes,
prefix: str = '',
suffix: str = '',
add_eos: bool = True,
) -> jax.Array:
"""
A tokenization function.
Args:
example: Input string to tokenize.
prefix: Prefix to add to the input string.
suffix: Suffix to add to the input string.
add_eos: If True, add an end of sentence token at the end of the output
sequence.
Returns:
Tokens corresponding to the input string.
"""
int_list = [self._spm_processor.bos_id()]
int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
if add_eos:
int_list.append(self._spm_processor.eos_id())
return jnp.array(int_list, dtype=jnp.int32)
def tokenize_tf_op(
self,
str_tensor: tf.Tensor,
prefix: str = '',
suffix: str = '',
add_eos: bool = True,
) -> tf.Tensor:
"""A TensforFlow operator for the `tokenize` function."""
encoded = tf.numpy_function(
self.tokenize,
[str_tensor, prefix, suffix, add_eos],
tf.int32)
encoded.set_shape([None])
return encoded
def to_string(self, tokens: jax.Array) -> str:
"""Convert an array of tokens to a string."""
return self._spm_processor.EncodeIds(tokens.tolist())
Yeni özel GriffinTokenizer
örnek oluşturup bunu MTNT veri kümesinin küçük bir örneğine uygulayarak bu özelliği deneyin:
def tokenize_source(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(
example,
prefix='Translate this into French:\n',
suffix='\n',
add_eos=False
)
def tokenize_destination(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(example, add_eos=True)
tokenizer = GriffinTokenizer(vocab)
ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {
'src': tokenize_source(tokenizer, x['src']),
'dst': tokenize_destination(tokenizer, x['dst'])
})
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Example 0: src: [ 2 49688 736 1280 6987 235292 108 651 2778 576 1080 104745 11982 5736 832 8995 901 780 3547 665 575 573 4589 235369 2778 235265 108] dst: [ 2 2025 29653 581 664 16298 1437 55563 41435 7840 581 683 111452 581 533 235303 9776 4108 2459 679 485 235303 479 6728 579 1806 2499 709 29653 581 533 235303 101323 16054 1] Example 1: src: [ 2 49688 736 1280 6987 235292 108 2437 87150 477 476 11709 230461 8045 3636 40268 576 4252 4897 235336 108] dst: [ 2 213606 477 1455 235290 3510 748 8268 191017 2809 581 2032 69972 581 11495 1305 533 235303 65978 1654 1]
Tüm MTNT veri kümesi için bir veri yükleyici oluşturun:
@chex.dataclass(frozen=True)
class TrainingInput:
# Input tokens provided to the model.
input_tokens: jax.Array
# A mask that determines which tokens contribute to the target loss
# calculation.
target_mask: jax.Array
class DatasetSplit(enum.Enum):
TRAIN = 'train'
VALIDATION = 'valid'
class MTNTDatasetBuilder:
"""A data loader for the MTNT dataset."""
N_ITEMS = {DatasetSplit.TRAIN: 35_692, DatasetSplit.VALIDATION: 811}
BUFFER_SIZE_SHUFFLE = 10_000
TRANSLATION_PREFIX = 'Translate this into French:\n'
TRANSLATION_SUFFIX = '\n'
def __init__(self,
tokenizer : GriffinTokenizer,
max_seq_len: int):
"""A constructor.
Args:
tokenizer: The tokenizer to use.
max_seq_len: The size of each sequence in a given batch.
"""
self._tokenizer = tokenizer
self._base_data = {
DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
}
self._max_seq_len = max_seq_len
def _tokenize_source(self, example: tf.Tensor):
"""A tokenization function for the source."""
return self._tokenizer.tokenize_tf_op(
example, prefix=self.TRANSLATION_PREFIX, suffix=self.TRANSLATION_SUFFIX,
add_eos=False
)
def _tokenize_destination(self, example: tf.Tensor):
"""A tokenization function for the French translation."""
return self._tokenizer.tokenize_tf_op(example, add_eos=True)
def _pad_up_to_max_len(self,
input_tensor: tf.Tensor,
pad_value: int | bool,
) -> tf.Tensor:
"""Pad the given tensor up to sequence length of a batch."""
seq_len = tf.shape(input_tensor)[0]
to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
return tf.pad(
input_tensor, [[0, to_pad]], mode='CONSTANT', constant_values=pad_value,
)
def _to_training_input(
self,
src_tokens: jax.Array,
dst_tokens: jax.Array,
) -> TrainingInput:
"""Build a training input from a tuple of source and destination tokens."""
# The input sequence fed to the model is simply the concatenation of the
# source and the destination.
tokens = tf.concat([src_tokens, dst_tokens], axis=0)
# You want to prevent the model from updating based on the source (input)
# tokens. To achieve this, add a target mask to each input.
q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
mask = tf.concat([q_mask, a_mask], axis=0)
# If the output tokens sequence is smaller than the target sequence size,
# then pad it with pad tokens.
tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)
# You don't want to perform the backward on the pad tokens.
mask = self._pad_up_to_max_len(mask, False)
return TrainingInput(input_tokens=tokens, target_mask=mask)
def get_train_dataset(self, batch_size: int, num_epochs: int):
"""Build the training dataset."""
# Tokenize each sample.
ds = self._base_data[DatasetSplit.TRAIN].map(
lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst']))
)
# Convert them to training inputs.
ds = ds.map(lambda x, y: self._to_training_input(x, y))
# Remove the samples which are too long.
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
# Shuffle the dataset.
ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)
# Repeat if necessary.
ds = ds.repeat(num_epochs)
# Build batches.
ds = ds.batch(batch_size, drop_remainder=True)
return ds
def get_validation_dataset(self, batch_size: int):
"""Build the validation dataset."""
# Same as the training dataset, but no shuffling and no repetition
ds = self._base_data[DatasetSplit.VALIDATION].map(
lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst']))
)
ds = ds.map(lambda x, y: self._to_training_input(x, y))
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
Özel GriffinTokenizer
örneğini tekrar oluşturup MTNT veri kümesine uygulayarak ve iki örneği örnekleyerek MTNTDatasetBuilder
işlevini deneyin:
dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> Example 0: input_tokens: [[ 2 49688 736 1280 6987 235292 108 12583 665 235265 108 2 6151 94975 1320 6238 235265 1 0 0] [ 2 49688 736 1280 6987 235292 108 4899 29960 11270 108282 235265 108 2 4899 79025 11270 108282 1 0] [ 2 49688 736 1280 6987 235292 108 26620 235265 108 2 26620 235265 1 0 0 0 0 0 0]] target_mask: [[False False False False False False False False False False False True True True True True True True False False] [False False False False False False False False False False False False False True True True True True True False] [False False False False False False False False False False True True True True False False False False False False]] Example 1: input_tokens: [[ 2 49688 736 1280 6987 235292 108 527 5174 1683 235336 108 2 206790 581 20726 482 2208 1654 1] [ 2 49688 736 1280 6987 235292 108 28484 235256 235336 108 2 120500 13832 1654 1 0 0 0 0] [ 2 49688 736 1280 6987 235292 108 235324 235304 2705 235265 108 2 235324 235304 19963 235265 1 0 0]] target_mask: [[False False False False False False False False False False False False True True True True True True True True] [False False False False False False False False False False False True True True True True False False False False] [False False False False False False False False False False False False True True True True True True False False]]
Modeli yapılandırma
Gemma modelinde ince ayar yapmaya başlamadan önce modeli yapılandırmanız gerekir.
RecurrentGemma (Griffin) modeli kontrol noktasını recurrentgemma.jax.utils.load_parameters
yöntemiyle yükleyin:
params = recurrentgemma.load_parameters(CKPT_PATH, "single_device")
RecurrentGemma model kontrol noktasından doğru yapılandırmayı otomatik olarak yüklemek için recurrentgemma.GriffinConfig.from_flax_params_or_variables
komutunu kullanın:
config = recurrentgemma.GriffinConfig.from_flax_params_or_variables(params)
Griffin modelini recurrentgemma.jax.Griffin
ile örneklendirin:
model = recurrentgemma.Griffin(config)
Modelinizin çeviri yapıp yapamayacağını kontrol etmek için RecurrentGemma model kontrol noktası/ağırlıkları ve jeton oluşturucunun üzerine recurrentgemma.jax.Sampler
ile bir sampler
oluşturun:
sampler = recurrentgemma.Sampler(model=model, vocab=vocab, params=params)
Modelde ince ayar yapma
Bu bölümde şunları yapacaksınız:
- İleriye doğru hesaplama ve kayıp işlevini oluşturmak için
gemma.transformer.Transformer
sınıfını kullanın. - Jetonlar için konum ve dikkat maskesi vektörleri oluşturma
- Flax ile eğitim adımı işlevi oluşturma
- Doğrulama adımını geriye doğru hesaplama olmadan oluşturun.
- Eğitim döngüsünü oluşturun.
- Gemma modelinde ince ayar yapın.
İleriye doğru geçişi ve kayıp işlevini, recurrentgemma.jax.griffin.Griffin
kullanarak tanımlama
sınıfını kullanır. RecurrentGemma Griffin
, flax.linen.Module
öğesinden devralır ve iki temel yöntem sunar:
init
: Modelin parametrelerini başlatır.apply
: Belirli bir parametre grubunu kullanarak modelin__call__
işlevini yürütür.
Önceden eğitilmiş Gemma ağırlıklarıyla çalıştığınız için init
işlevini kullanmanız gerekmez.
def forward_and_loss_fn(
params,
*,
model: recurrentgemma.Griffin,
input_tokens: jax.Array, # Shape [B, L]
input_mask: jax.Array, # Shape [B, L]
positions: jax.Array, # Shape [B, L]
) -> jax.Array:
"""Forward pass and loss function.
Args:
params: model's input parameters.
model: Griffin model to call.
input_tokens: input tokens sequence, shape [B, L].
input_mask: tokens to ignore when computing the loss, shape [B, L].
positions: relative position of each token, shape [B, L].
Returns:
Softmax cross-entropy loss for the next-token prediction task.
"""
batch_size = input_tokens.shape[0]
# Forward pass on the input data.
# No attention cache is needed here.
# Exclude the last step as it does not appear in the targets.
logits, _ = model.apply(
{"params": params},
tokens=input_tokens[:, :-1],
segment_pos=positions[:, :-1],
cache=None,
)
# Similarly, the first token cannot be predicteds.
target_tokens = input_tokens[:, 1:]
target_mask = input_mask[:, 1:]
# Convert the target labels into one-hot encoded vectors.
one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])
# Don't update on unwanted tokens.
one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]
# Normalization factor.
norm_factor = batch_size * (jnp.sum(target_mask) + 1e-8)
# Return the negative log-likelihood loss (NLL) function.
return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) / norm_factor
Geriye geçişi gerçekleştiren ve modelin parametrelerini uygun şekilde güncelleyen train_step
işlevini oluşturun. Burada:
jax.value_and_grad
, ileri ve geri geçişler sırasında kayıp işlevini ve gradyanları değerlendirmek içindir.optax.apply_updates
, parametreleri güncellemek içindir.
Params = Mapping[str, Any]
def get_positions(example: jax.Array, pad_id : int) -> jax.Array:
"""Builds the position vector from the given tokens."""
pad_mask = example != pad_id
positions = jnp.cumsum(pad_mask, axis=-1)
# Subtract one for all positions from the first valid one as they are
# 0-indexed
positions = positions - (positions >= 1)
return positions
@functools.partial(
jax.jit,
static_argnames=['model', 'optimizer'],
donate_argnames=['params', 'opt_state'],
)
def train_step(
model: recurrentgemma.Griffin,
params: Params,
optimizer: optax.GradientTransformation,
opt_state: optax.OptState,
pad_id: int,
example: TrainingInput,
) -> tuple[jax.Array, Params, optax.OptState]:
"""The train step.
Args:
model: The RecurrentGemma (Griffin) model.
params: The model's input parameters.
optimizer: The Optax optimizer to use.
opt_state: The input optimizer's state.
pad_id: The ID of the pad token.
example: The input batch.
Returns:
Training loss, updated parameters, updated optimizer state.
"""
positions = get_positions(example.input_tokens, pad_id)
# Forward and backward passes.
train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(
params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=positions,
)
# Update the parameters.
updates, opt_state = optimizer.update(grads, opt_state, params)
params = optax.apply_updates(params, updates)
return train_loss, params, opt_state
Geriye doğru geçiş olmadan validation_step
işlevini oluşturun:
@functools.partial(jax.jit, static_argnames=['model'])
def validation_step(
model: recurrentgemma.Griffin,
params: Params,
pad_id: int,
example: TrainingInput,
) -> jax.Array:
return forward_and_loss_fn(
params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=get_positions(example.input_tokens, pad_id),
)
Eğitim döngüsünü tanımlayın:
def train_loop(
model: recurrentgemma.Griffin,
params: Params,
optimizer: optax.GradientTransformation,
train_ds: Iterator[TrainingInput],
validation_ds: Iterator[TrainingInput],
num_steps: int | None = None,
eval_every_n: int = 20,
):
opt_state = jax.jit(optimizer.init)(params)
step_counter = 0
avg_loss=0
# The first round of the validation loss.
n_steps_eval = 0
eval_loss = 0
for val_example in validation_ds.as_numpy_iterator():
eval_loss += validation_step(
model, params, dataset_builder._tokenizer.pad_id, val_example
)
n_steps_eval += 1
print(f"Start, validation loss: {eval_loss/n_steps_eval}")
for train_example in train_ds:
train_loss, params, opt_state = train_step(
model=model,
params=params,
optimizer=optimizer,
opt_state=opt_state,
pad_id=dataset_builder._tokenizer.pad_id,
example=train_example,
)
step_counter += 1
avg_loss += train_loss
if step_counter % eval_every_n == 0:
eval_loss = 0
n_steps_eval = 0
val_iterator = validation_ds.as_numpy_iterator()
for val_example in val_iterator:
eval_loss += validation_step(
model,
params,
dataset_builder._tokenizer.pad_id,
val_example,
)
n_steps_eval +=1
avg_loss /= eval_every_n
eval_loss /= n_steps_eval
print(f"STEP {step_counter} training loss: {avg_loss} - eval loss: {eval_loss}")
avg_loss=0
if num_steps is not None and step_counter > num_steps:
break
return params
Burada, bir (Optax) optimize edici seçmeniz gerekiyor. Daha küçük belleğe sahip cihazlarda bellek ayak izi çok daha az olduğundan SGD'yi kullanmalısınız. En iyi ince ayar performansını elde etmek için Adam-W'yu deneyin. Bu not defterindeki belirli bir göreve yönelik olarak her bir optimize ediciye yönelik optimum hiperparametreler, bu örnekte 2b-it
kontrol noktası için sağlanmıştır.
def griffin_weight_decay_mask(params_like: optax.Params) -> Any:
# Don't put weight decay on the RGLRU, the embeddings and any biases
def enable_weight_decay(path: list[Any], _: Any) -> bool:
# Parameters in the LRU and embedder
path = [dict_key.key for dict_key in path]
if 'rg_lru' in path or 'embedder' in path:
return False
# All biases and scales
if path[-1] in ('b', 'scale'):
return False
return True
return jax.tree_util.tree_map_with_path(enable_weight_decay, params_like)
optimizer_choice = "sgd"
if optimizer_choice == "sgd":
optimizer = optax.sgd(learning_rate=1e-3)
num_steps = 300
elif optimizer_choice == "adamw":
optimizer = optax.adamw(
learning_rate=1e-4,
b2=0.96,
eps=1e-8,
weight_decay=0.1,
mask=griffin_weight_decay_mask,
)
num_steps = 100
else:
raise ValueError(f"Unknown optimizer: {optimizer_choice}")
Eğitim ve doğrulama veri kümelerini hazırlayın:
# Choose a small sequence length size, so that everything fits in memory.
num_epochs = 1
batch_size = 1
sequence_length = 32
# Make the dataset builder.
tokenizer = GriffinTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, sequence_length + 1)
# Build the training dataset.
train_ds = dataset_builder.get_train_dataset(
batch_size=batch_size,
num_epochs=num_epochs,
).as_numpy_iterator()
# Build the validation dataset, with a limited number of samples for this demo.
validation_ds = dataset_builder.get_validation_dataset(
batch_size=batch_size,
).take(50)
Sınırlı sayıda adımla (num_steps
) RecurrentGemma (Griffin) modelinde ince ayar yapmaya başlayın:
trained_params = train_loop(
model=model,
params=params,
optimizer=optimizer,
train_ds=train_ds,
validation_ds=validation_ds,
num_steps=num_steps,
)
Start, validation loss: 7.894117832183838 /usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,33]), ShapedArray(bool[1,33]), ShapedArray(int32[], weak_type=True). See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation. warnings.warn("Some donated buffers were not usable:" STEP 20 training loss: 4.592616081237793 - eval loss: 2.847407102584839 STEP 40 training loss: 2.7537424564361572 - eval loss: 2.9258534908294678 STEP 60 training loss: 2.835618257522583 - eval loss: 2.4382340908050537 STEP 80 training loss: 2.6322107315063477 - eval loss: 2.3696839809417725 STEP 100 training loss: 1.8703256845474243 - eval loss: 2.355681896209717 STEP 120 training loss: 2.7280433177948 - eval loss: 2.4059958457946777 STEP 140 training loss: 2.3047447204589844 - eval loss: 2.083082914352417 STEP 160 training loss: 2.3432137966156006 - eval loss: 2.095074415206909 STEP 180 training loss: 2.1081202030181885 - eval loss: 2.006460189819336 STEP 200 training loss: 2.5359647274017334 - eval loss: 1.9667452573776245 STEP 220 training loss: 2.202195644378662 - eval loss: 1.9440618753433228 STEP 240 training loss: 2.756615400314331 - eval loss: 2.1073737144470215 STEP 260 training loss: 2.5128934383392334 - eval loss: 2.117241859436035 STEP 280 training loss: 2.73045015335083 - eval loss: 1.9159646034240723 STEP 300 training loss: 2.0918595790863037 - eval loss: 1.9742532968521118
Her adım sayımında hem eğitim kaybı hem de doğrulama kaybı azalmış olmalıydı.
Girişinizin eğitim biçimiyle eşleştiğinden emin olmak için Translate this into French:\n
önekini ve sonda yeni satır karakteri kullanmayı unutmayın. Bu işlem, modele çeviriye başlama sinyalini verir.
sampler.params = trained_params
output = sampler(
["Translate this into French:\nHello, my name is Morgane.\n"],
total_generation_steps=100,
)
print(output.text[0])
/usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,16]). See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation. warnings.warn("Some donated buffers were not usable:" Mais je m'appelle Morgane.
Daha fazla bilgi
- Bu eğiticide kullandığınız yöntem ve modüllerin yer aldığı
recurrentgemma.jax.load_parameters
,recurrentgemma.jax.Griffin
verecurrentgemma.jax.Sampler
gibi yöntemlerin ve modüllerin yer aldığı Google DeepMindrecurrentgemma
kitaplığı hakkında daha fazla bilgi edinmek için GitHub'a gidin. - Şu kütüphanelerin kendi dokümantasyon siteleri vardır: core JAX, Flax, Chex, Optax ve Orbax.
sentencepiece
jeton oluşturucu/detokenizer belgeleri için Google'ınsentencepiece
GitHub deposuna göz atın.kagglehub
dokümanları için Kaggle'ınkagglehub
GitHub deposundakiREADME.md
sayfasına göz atın.- Gemma modellerini Google Cloud Vertex AI ile nasıl kullanacağınızı öğrenin.
- Google Cloud TPU'ları (v3-8 ve daha yeni) kullanıyorsanız ayrıca en son
jax[tpu]
paketine (!pip install -U jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
) güncelleme yaptığınızdan, çalışma zamanını yeniden başlattığınızdan vejax
ilejaxlib
sürümlerinin eşleştiğinden (!pip list | grep jax
) emin olun. Bu işlem,jaxlib
vejax
sürümlerindeki uyuşmazlıklar nedeniyle oluşabilecekRuntimeError
oluşmasını önleyebilir. Daha fazla JAX yükleme talimatları için JAX belgelerine bakın. - Şu göz atın: RecurrentGemma: Move Geçmiş Transformers for Efficient Open Language Models (Verimli Open Language Models) başlıklı makaleyi inceleyin.
- Griffin: Kaplı Doğrusal Yinelemeleri Karıştırma ile Local Attention for Efficient Language Models (Google DeepMind tarafından hazırlanan Yerel Attention for Efficient Language Models) makalesinde, RecurrentGemma tarafından kullanılan model mimarisi hakkında daha fazla bilgi edinebilirsiniz.