Ver en ai.google.dev | Ejecutar en Google Colab | Abrir en Vertex AI | Ver el código fuente en GitHub |
En este instructivo, se muestra cómo ajustar el modelo RecurrentGemma 2B Instruct para una tarea de traducción inglés-francés con la biblioteca recurrentgemma
de Google DeepMind, JAX (una biblioteca de procesamiento numérico de alto rendimiento), Flax (la biblioteca de red neuronal basada en JAX), Chex (una biblioteca de utilidades de procesamiento de inglés-francés) con la biblioteca recurrentgemma
de Google DeepMind, JAX (una biblioteca de computación numérica de alto rendimiento), Flax (la biblioteca de red neuronal basada en JAX), Chex (una biblioteca de utilidades de procesamiento para escribir código de procesamiento JAX y NoMT3) confiable), Optax Aunque Flax no se usa directamente en este bloc de notas, se usó para crear Gemma.
La biblioteca recurrentgemma
se escribió con JAX, Flax, Orbax (una biblioteca basada en JAX para utilidades de entrenamiento, como puntos de control) y SentencePiece (una biblioteca de tokenizador/detokenizador).
Este notebook se puede ejecutar en Google Colab con la GPU T4 (ve a Editar > Configuración del notebook > en Acelerador de hardware, selecciona GPU T4).
Configuración
En las siguientes secciones, se explican los pasos para preparar un notebook para usar un modelo RecurrentGemma, incluido el acceso al modelo, la obtención de una clave de API y la configuración del entorno de ejecución del notebook.
Configurar acceso a Kaggle para Gemma
Para completar este instructivo, primero debes seguir las instrucciones de configuración similares a la configuración de Gemma, con algunas excepciones:
- Obtén acceso a RecurrentGemma (en lugar de Gemma) en kaggle.com.
- Selecciona un entorno de ejecución de Colab con recursos suficientes para ejecutar el modelo RecurrentGemma.
- Generar y configurar un nombre de usuario Kaggle y una clave de API.
Después de completar la configuración de RecurrentGemma, continúa con la siguiente sección, en la que establecerás variables de entorno para tu entorno de Colab.
Configure las variables de entorno
Configura variables de entorno para KAGGLE_USERNAME
y KAGGLE_KEY
. Cuando aparezca el mensaje “¿Quieres otorgar acceso?” mensajes, acepta proporcionar acceso al Secret.
import os
from google.colab import userdata # `userdata` is a Colab API.
os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')
Instala la biblioteca recurrentgemma
Por el momento, la aceleración de hardware de Colab es insuficiente para ejecutar este notebook. Si usas Colab Pay As You Go o Colab Pro, haz clic en Editar > Configuración del notebook > Selecciona GPU A100 > Guarda para habilitar la aceleración de hardware.
A continuación, debes instalar la biblioteca recurrentgemma
de Google DeepMind desde github.com/google-deepmind/recurrentgemma
. Si recibes un error sobre el “agente de resolución de dependencias de pip”, por lo general, puedes ignorarlo.
pip install -q git+https://github.com/google-deepmind/recurrentgemma.git
Importa las bibliotecas
Este notebook usa Flax (para redes neuronales), JAX principal, SentencePiece (para la asignación de token), Chex (una biblioteca de utilidades para escribir código JAX confiable), Optax (la biblioteca de procesamiento y optimización de gradientes) y TensorFlow Datasets.
import pathlib
from typing import Any, Mapping, Iterator
import enum
import functools
import chex
import jax
import jax.numpy as jnp
import optax
import tensorflow as tf
import tensorflow_datasets as tfds
import sentencepiece as spm
from recurrentgemma import jax as recurrentgemma
Carga el modelo RecurrentGemma
- Carga el modelo RecurrentGemma con
kagglehub.model_download
, que toma tres argumentos:
handle
: el controlador del modelo de Kagglepath
: (Cadena opcional) es la ruta de acceso local.force_download
: (booleano opcional) Obliga a volver a descargar el modelo.
RECURRENTGEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub
RECURRENTGEMMA_PATH = kagglehub.model_download(f'google/recurrentgemma/flax/{RECURRENTGEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/recurrentgemma/flax/2b-it/1/download... 100%|██████████| 3.85G/3.85G [00:50<00:00, 81.5MB/s] Extracting model files...
print('RECURRENTGEMMA_VARIANT:', RECURRENTGEMMA_VARIANT)
RECURRENTGEMMA_VARIANT: 2b-it
- Verifica la ubicación de los pesos del modelo y el tokenizador, luego establece las variables de la ruta de acceso. El directorio del tokenizador estará en el directorio principal donde descargaste el modelo, mientras que los pesos del modelo estarán en un subdirectorio. Por ejemplo:
- El archivo
tokenizer.model
estará en/LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1
). - El punto de control del modelo estará en
/LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1/2b-it
).
CKPT_PATH = os.path.join(RECURRENTGEMMA_PATH, RECURRENTGEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(RECURRENTGEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/2b-it TOKENIZER_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/tokenizer.model
Carga y prepara el conjunto de datos MTNT y el tokenizador de Gemma
Usarás el conjunto de datos MTNT (Traducción automática de texto ruidoso), que está disponible en Conjuntos de datos de TensorFlow.
Descarga la porción del conjunto de datos de inglés a francés del conjunto de datos MTNT y, luego, toma muestras de dos ejemplos. Cada muestra del conjunto de datos contiene dos entradas: src
: la oración original en inglés; y dst
: la traducción al francés correspondiente.
ds = tfds.load("mtnt/en-fr", split="train")
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0... Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s] Extraction completed...: 0 file [00:00, ? file/s] Generating splits...: 0%| | 0/3 [00:00<?, ? splits/s] Generating train examples...: 0%| | 0/35692 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-train.tfrecord*...: 0%| … Generating test examples...: 0%| | 0/1020 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-test.tfrecord*...: 0%| |… Generating valid examples...: 0%| | 0/811 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-valid.tfrecord*...: 0%| … Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data. Example 0: dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".' src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.' Example 1: dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?" src: b'Is Kameron a Little Salty About Her Lack of Air Time?'
Carga el tokenizador de Gemma, construido con sentencepiece.SentencePieceProcessor
:
vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
Personaliza el SentencePieceProcessor
para la tarea de traducción de inglés a francés. Dado que estarás ajustando la parte en inglés del modelo RecurrentGemma (Griffin), debes hacer algunos ajustes, como los siguientes:
El prefijo de entrada: Agregar un prefijo común a cada entrada indica la tarea de traducción. Por ejemplo, podrías usar un mensaje con un prefijo como
Translate this into French: [INPUT_SENTENCE]
.El sufijo de inicio de la traducción: Agregar un sufijo al final de cada instrucción le indica al modelo Gemma exactamente cuándo comenzar el proceso de traducción. Una línea nueva debería hacer el trabajo.
Tokens de modelo de lenguaje: Los modelos de RecurrentGemma (Griffin) esperan un “principio de la secuencia”. token al comienzo de cada secuencia. Del mismo modo, debe agregar un “fin de la secuencia” token correcto al final de cada ejemplo de entrenamiento.
Crea un wrapper personalizado alrededor de SentencePieceProcessor
de la siguiente manera:
class GriffinTokenizer:
"""A custom wrapper around a SentencePieceProcessor."""
def __init__(self, spm_processor: spm.SentencePieceProcessor):
self._spm_processor = spm_processor
@property
def pad_id(self) -> int:
"""Fast access to the pad ID."""
return self._spm_processor.pad_id()
def tokenize(
self,
example: str | bytes,
prefix: str = '',
suffix: str = '',
add_eos: bool = True,
) -> jax.Array:
"""
A tokenization function.
Args:
example: Input string to tokenize.
prefix: Prefix to add to the input string.
suffix: Suffix to add to the input string.
add_eos: If True, add an end of sentence token at the end of the output
sequence.
Returns:
Tokens corresponding to the input string.
"""
int_list = [self._spm_processor.bos_id()]
int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
if add_eos:
int_list.append(self._spm_processor.eos_id())
return jnp.array(int_list, dtype=jnp.int32)
def tokenize_tf_op(
self,
str_tensor: tf.Tensor,
prefix: str = '',
suffix: str = '',
add_eos: bool = True,
) -> tf.Tensor:
"""A TensforFlow operator for the `tokenize` function."""
encoded = tf.numpy_function(
self.tokenize,
[str_tensor, prefix, suffix, add_eos],
tf.int32)
encoded.set_shape([None])
return encoded
def to_string(self, tokens: jax.Array) -> str:
"""Convert an array of tokens to a string."""
return self._spm_processor.EncodeIds(tokens.tolist())
Para probarlo, crea una instancia de tu GriffinTokenizer
personalizado nuevo y, luego, aplícalo en una muestra pequeña del conjunto de datos de MTNT:
def tokenize_source(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(
example,
prefix='Translate this into French:\n',
suffix='\n',
add_eos=False
)
def tokenize_destination(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(example, add_eos=True)
tokenizer = GriffinTokenizer(vocab)
ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {
'src': tokenize_source(tokenizer, x['src']),
'dst': tokenize_destination(tokenizer, x['dst'])
})
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Example 0: src: [ 2 49688 736 1280 6987 235292 108 651 2778 576 1080 104745 11982 5736 832 8995 901 780 3547 665 575 573 4589 235369 2778 235265 108] dst: [ 2 2025 29653 581 664 16298 1437 55563 41435 7840 581 683 111452 581 533 235303 9776 4108 2459 679 485 235303 479 6728 579 1806 2499 709 29653 581 533 235303 101323 16054 1] Example 1: src: [ 2 49688 736 1280 6987 235292 108 2437 87150 477 476 11709 230461 8045 3636 40268 576 4252 4897 235336 108] dst: [ 2 213606 477 1455 235290 3510 748 8268 191017 2809 581 2032 69972 581 11495 1305 533 235303 65978 1654 1]
Compila un cargador de datos para todo el conjunto de datos de MTNT:
@chex.dataclass(frozen=True)
class TrainingInput:
# Input tokens provided to the model.
input_tokens: jax.Array
# A mask that determines which tokens contribute to the target loss
# calculation.
target_mask: jax.Array
class DatasetSplit(enum.Enum):
TRAIN = 'train'
VALIDATION = 'valid'
class MTNTDatasetBuilder:
"""A data loader for the MTNT dataset."""
N_ITEMS = {DatasetSplit.TRAIN: 35_692, DatasetSplit.VALIDATION: 811}
BUFFER_SIZE_SHUFFLE = 10_000
TRANSLATION_PREFIX = 'Translate this into French:\n'
TRANSLATION_SUFFIX = '\n'
def __init__(self,
tokenizer : GriffinTokenizer,
max_seq_len: int):
"""A constructor.
Args:
tokenizer: The tokenizer to use.
max_seq_len: The size of each sequence in a given batch.
"""
self._tokenizer = tokenizer
self._base_data = {
DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
}
self._max_seq_len = max_seq_len
def _tokenize_source(self, example: tf.Tensor):
"""A tokenization function for the source."""
return self._tokenizer.tokenize_tf_op(
example, prefix=self.TRANSLATION_PREFIX, suffix=self.TRANSLATION_SUFFIX,
add_eos=False
)
def _tokenize_destination(self, example: tf.Tensor):
"""A tokenization function for the French translation."""
return self._tokenizer.tokenize_tf_op(example, add_eos=True)
def _pad_up_to_max_len(self,
input_tensor: tf.Tensor,
pad_value: int | bool,
) -> tf.Tensor:
"""Pad the given tensor up to sequence length of a batch."""
seq_len = tf.shape(input_tensor)[0]
to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
return tf.pad(
input_tensor, [[0, to_pad]], mode='CONSTANT', constant_values=pad_value,
)
def _to_training_input(
self,
src_tokens: jax.Array,
dst_tokens: jax.Array,
) -> TrainingInput:
"""Build a training input from a tuple of source and destination tokens."""
# The input sequence fed to the model is simply the concatenation of the
# source and the destination.
tokens = tf.concat([src_tokens, dst_tokens], axis=0)
# You want to prevent the model from updating based on the source (input)
# tokens. To achieve this, add a target mask to each input.
q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
mask = tf.concat([q_mask, a_mask], axis=0)
# If the output tokens sequence is smaller than the target sequence size,
# then pad it with pad tokens.
tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)
# You don't want to perform the backward on the pad tokens.
mask = self._pad_up_to_max_len(mask, False)
return TrainingInput(input_tokens=tokens, target_mask=mask)
def get_train_dataset(self, batch_size: int, num_epochs: int):
"""Build the training dataset."""
# Tokenize each sample.
ds = self._base_data[DatasetSplit.TRAIN].map(
lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst']))
)
# Convert them to training inputs.
ds = ds.map(lambda x, y: self._to_training_input(x, y))
# Remove the samples which are too long.
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
# Shuffle the dataset.
ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)
# Repeat if necessary.
ds = ds.repeat(num_epochs)
# Build batches.
ds = ds.batch(batch_size, drop_remainder=True)
return ds
def get_validation_dataset(self, batch_size: int):
"""Build the validation dataset."""
# Same as the training dataset, but no shuffling and no repetition
ds = self._base_data[DatasetSplit.VALIDATION].map(
lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst']))
)
ds = ds.map(lambda x, y: self._to_training_input(x, y))
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
Prueba el MTNTDatasetBuilder
creando una nueva instancia del GriffinTokenizer
personalizado, luego aplicándolo en el conjunto de datos de MTNT y tomando muestras de dos ejemplos:
dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> Example 0: input_tokens: [[ 2 49688 736 1280 6987 235292 108 12583 665 235265 108 2 6151 94975 1320 6238 235265 1 0 0] [ 2 49688 736 1280 6987 235292 108 4899 29960 11270 108282 235265 108 2 4899 79025 11270 108282 1 0] [ 2 49688 736 1280 6987 235292 108 26620 235265 108 2 26620 235265 1 0 0 0 0 0 0]] target_mask: [[False False False False False False False False False False False True True True True True True True False False] [False False False False False False False False False False False False False True True True True True True False] [False False False False False False False False False False True True True True False False False False False False]] Example 1: input_tokens: [[ 2 49688 736 1280 6987 235292 108 527 5174 1683 235336 108 2 206790 581 20726 482 2208 1654 1] [ 2 49688 736 1280 6987 235292 108 28484 235256 235336 108 2 120500 13832 1654 1 0 0 0 0] [ 2 49688 736 1280 6987 235292 108 235324 235304 2705 235265 108 2 235324 235304 19963 235265 1 0 0]] target_mask: [[False False False False False False False False False False False False True True True True True True True True] [False False False False False False False False False False False True True True True True False False False False] [False False False False False False False False False False False False True True True True True True False False]]
Configura el modelo
Antes de comenzar a ajustar el modelo de Gemma, debes configurarlo.
Carga el punto de control del modelo RecurrentGemma (Griffin) con el método recurrentgemma.jax.utils.load_parameters
:
params = recurrentgemma.load_parameters(CKPT_PATH, "single_device")
Para cargar automáticamente la configuración correcta desde el punto de control del modelo RecurrentGemma, usa recurrentgemma.GriffinConfig.from_flax_params_or_variables
:
config = recurrentgemma.GriffinConfig.from_flax_params_or_variables(params)
Crea una instancia del modelo Griffin con recurrentgemma.jax.Griffin
:
model = recurrentgemma.Griffin(config)
Crea un sampler
con recurrentgemma.jax.Sampler
sobre los pesos o los puntos de control del modelo RecurrentGemma y el tokenizador para verificar si tu modelo puede realizar la traducción:
sampler = recurrentgemma.Sampler(model=model, vocab=vocab, params=params)
Ajusta el modelo
En esta sección, deberás hacer lo siguiente:
- Usa la clase
gemma.transformer.Transformer
para crear la función de avance y pérdida. - Crear los vectores de máscara de posición y atención para los tokens
- Compila una función de pasos de entrenamiento con Flax.
- Compila el paso de validación sin el pase hacia atrás.
- Crea el bucle de entrenamiento.
- Ajusta el modelo Gemma.
Define el pase hacia delante y la función de pérdida con recurrentgemma.jax.griffin.Griffin
.
clase. El Griffin
de RecurrentGemma se hereda de flax.linen.Module
y ofrece dos métodos esenciales:
init
: Inicializa los parámetros del modelo.apply
: Ejecuta la función__call__
del modelo con un conjunto determinado de parámetros.
Como estás trabajando con pesos de Gemma previamente entrenados, no necesitas usar la función init
.
def forward_and_loss_fn(
params,
*,
model: recurrentgemma.Griffin,
input_tokens: jax.Array, # Shape [B, L]
input_mask: jax.Array, # Shape [B, L]
positions: jax.Array, # Shape [B, L]
) -> jax.Array:
"""Forward pass and loss function.
Args:
params: model's input parameters.
model: Griffin model to call.
input_tokens: input tokens sequence, shape [B, L].
input_mask: tokens to ignore when computing the loss, shape [B, L].
positions: relative position of each token, shape [B, L].
Returns:
Softmax cross-entropy loss for the next-token prediction task.
"""
batch_size = input_tokens.shape[0]
# Forward pass on the input data.
# No attention cache is needed here.
# Exclude the last step as it does not appear in the targets.
logits, _ = model.apply(
{"params": params},
tokens=input_tokens[:, :-1],
segment_pos=positions[:, :-1],
cache=None,
)
# Similarly, the first token cannot be predicteds.
target_tokens = input_tokens[:, 1:]
target_mask = input_mask[:, 1:]
# Convert the target labels into one-hot encoded vectors.
one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])
# Don't update on unwanted tokens.
one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]
# Normalization factor.
norm_factor = batch_size * (jnp.sum(target_mask) + 1e-8)
# Return the negative log-likelihood loss (NLL) function.
return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) / norm_factor
Compila la función train_step
que realiza la reversión y actualiza los parámetros del modelo según corresponda, en la que sucede lo siguiente:
jax.value_and_grad
se usa para evaluar la función de pérdida y los gradientes durante los pases hacia delante y hacia atrás.optax.apply_updates
se usa para actualizar los parámetros.
Params = Mapping[str, Any]
def get_positions(example: jax.Array, pad_id : int) -> jax.Array:
"""Builds the position vector from the given tokens."""
pad_mask = example != pad_id
positions = jnp.cumsum(pad_mask, axis=-1)
# Subtract one for all positions from the first valid one as they are
# 0-indexed
positions = positions - (positions >= 1)
return positions
@functools.partial(
jax.jit,
static_argnames=['model', 'optimizer'],
donate_argnames=['params', 'opt_state'],
)
def train_step(
model: recurrentgemma.Griffin,
params: Params,
optimizer: optax.GradientTransformation,
opt_state: optax.OptState,
pad_id: int,
example: TrainingInput,
) -> tuple[jax.Array, Params, optax.OptState]:
"""The train step.
Args:
model: The RecurrentGemma (Griffin) model.
params: The model's input parameters.
optimizer: The Optax optimizer to use.
opt_state: The input optimizer's state.
pad_id: The ID of the pad token.
example: The input batch.
Returns:
Training loss, updated parameters, updated optimizer state.
"""
positions = get_positions(example.input_tokens, pad_id)
# Forward and backward passes.
train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(
params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=positions,
)
# Update the parameters.
updates, opt_state = optimizer.update(grads, opt_state, params)
params = optax.apply_updates(params, updates)
return train_loss, params, opt_state
Compila la función validation_step
sin la retropropagación:
@functools.partial(jax.jit, static_argnames=['model'])
def validation_step(
model: recurrentgemma.Griffin,
params: Params,
pad_id: int,
example: TrainingInput,
) -> jax.Array:
return forward_and_loss_fn(
params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=get_positions(example.input_tokens, pad_id),
)
Define el bucle de entrenamiento:
def train_loop(
model: recurrentgemma.Griffin,
params: Params,
optimizer: optax.GradientTransformation,
train_ds: Iterator[TrainingInput],
validation_ds: Iterator[TrainingInput],
num_steps: int | None = None,
eval_every_n: int = 20,
):
opt_state = jax.jit(optimizer.init)(params)
step_counter = 0
avg_loss=0
# The first round of the validation loss.
n_steps_eval = 0
eval_loss = 0
for val_example in validation_ds.as_numpy_iterator():
eval_loss += validation_step(
model, params, dataset_builder._tokenizer.pad_id, val_example
)
n_steps_eval += 1
print(f"Start, validation loss: {eval_loss/n_steps_eval}")
for train_example in train_ds:
train_loss, params, opt_state = train_step(
model=model,
params=params,
optimizer=optimizer,
opt_state=opt_state,
pad_id=dataset_builder._tokenizer.pad_id,
example=train_example,
)
step_counter += 1
avg_loss += train_loss
if step_counter % eval_every_n == 0:
eval_loss = 0
n_steps_eval = 0
val_iterator = validation_ds.as_numpy_iterator()
for val_example in val_iterator:
eval_loss += validation_step(
model,
params,
dataset_builder._tokenizer.pad_id,
val_example,
)
n_steps_eval +=1
avg_loss /= eval_every_n
eval_loss /= n_steps_eval
print(f"STEP {step_counter} training loss: {avg_loss} - eval loss: {eval_loss}")
avg_loss=0
if num_steps is not None and step_counter > num_steps:
break
return params
Aquí debes elegir un optimizador (Optax). Para dispositivos con memoria más pequeña, deberías usar SGD, ya que tiene un uso de memoria mucho menor. Para obtener un mejor rendimiento de ajuste, prueba Adam-W. En este ejemplo, se proporcionan los hiperparámetros óptimos para cada optimizador de la tarea particular en este notebook para el punto de control 2b-it
.
def griffin_weight_decay_mask(params_like: optax.Params) -> Any:
# Don't put weight decay on the RGLRU, the embeddings and any biases
def enable_weight_decay(path: list[Any], _: Any) -> bool:
# Parameters in the LRU and embedder
path = [dict_key.key for dict_key in path]
if 'rg_lru' in path or 'embedder' in path:
return False
# All biases and scales
if path[-1] in ('b', 'scale'):
return False
return True
return jax.tree_util.tree_map_with_path(enable_weight_decay, params_like)
optimizer_choice = "sgd"
if optimizer_choice == "sgd":
optimizer = optax.sgd(learning_rate=1e-3)
num_steps = 300
elif optimizer_choice == "adamw":
optimizer = optax.adamw(
learning_rate=1e-4,
b2=0.96,
eps=1e-8,
weight_decay=0.1,
mask=griffin_weight_decay_mask,
)
num_steps = 100
else:
raise ValueError(f"Unknown optimizer: {optimizer_choice}")
Prepara los conjuntos de datos de entrenamiento y validación:
# Choose a small sequence length size, so that everything fits in memory.
num_epochs = 1
batch_size = 1
sequence_length = 32
# Make the dataset builder.
tokenizer = GriffinTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, sequence_length + 1)
# Build the training dataset.
train_ds = dataset_builder.get_train_dataset(
batch_size=batch_size,
num_epochs=num_epochs,
).as_numpy_iterator()
# Build the validation dataset, with a limited number of samples for this demo.
validation_ds = dataset_builder.get_validation_dataset(
batch_size=batch_size,
).take(50)
Comienza el ajuste del modelo RecurrentGemma (Griffin) en una cantidad limitada de pasos (num_steps
):
trained_params = train_loop(
model=model,
params=params,
optimizer=optimizer,
train_ds=train_ds,
validation_ds=validation_ds,
num_steps=num_steps,
)
Start, validation loss: 7.894117832183838 /usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,33]), ShapedArray(bool[1,33]), ShapedArray(int32[], weak_type=True). See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation. warnings.warn("Some donated buffers were not usable:" STEP 20 training loss: 4.592616081237793 - eval loss: 2.847407102584839 STEP 40 training loss: 2.7537424564361572 - eval loss: 2.9258534908294678 STEP 60 training loss: 2.835618257522583 - eval loss: 2.4382340908050537 STEP 80 training loss: 2.6322107315063477 - eval loss: 2.3696839809417725 STEP 100 training loss: 1.8703256845474243 - eval loss: 2.355681896209717 STEP 120 training loss: 2.7280433177948 - eval loss: 2.4059958457946777 STEP 140 training loss: 2.3047447204589844 - eval loss: 2.083082914352417 STEP 160 training loss: 2.3432137966156006 - eval loss: 2.095074415206909 STEP 180 training loss: 2.1081202030181885 - eval loss: 2.006460189819336 STEP 200 training loss: 2.5359647274017334 - eval loss: 1.9667452573776245 STEP 220 training loss: 2.202195644378662 - eval loss: 1.9440618753433228 STEP 240 training loss: 2.756615400314331 - eval loss: 2.1073737144470215 STEP 260 training loss: 2.5128934383392334 - eval loss: 2.117241859436035 STEP 280 training loss: 2.73045015335083 - eval loss: 1.9159646034240723 STEP 300 training loss: 2.0918595790863037 - eval loss: 1.9742532968521118
Tanto la pérdida de entrenamiento como la de validación deberían haberse reducido con cada recuento de pasos.
Para asegurarte de que tu entrada coincida con el formato de entrenamiento, recuerda usar el prefijo Translate this into French:\n
y un carácter de línea nueva al final. Esto le indica al modelo que comience la traducción.
sampler.params = trained_params
output = sampler(
["Translate this into French:\nHello, my name is Morgane.\n"],
total_generation_steps=100,
)
print(output.text[0])
/usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,16]). See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation. warnings.warn("Some donated buffers were not usable:" Mais je m'appelle Morgane.
Más información
- Puedes obtener más información sobre la biblioteca
recurrentgemma
de Google DeepMind en GitHub, que contiene docstrings de métodos y módulos que usaste en este instructivo, comorecurrentgemma.jax.load_parameters
,recurrentgemma.jax.Griffin
yrecurrentgemma.jax.Sampler
. - Las siguientes bibliotecas tienen sus propios sitios de documentación: core JAX, Flax, Chex, Optax y Orbax.
- Para ver la documentación del tokenizador/detokenizador
sentencepiece
, consulta el repositorio de GitHubsentencepiece
de Google. - Para ver la documentación de
kagglehub
, consultaREADME.md
en el repositorio de GitHubkagglehub
de Kaggle. - Aprende a usar modelos de Gemma con Vertex AI de Google Cloud.
- Si usas Google Cloud TPU (v3-8 y versiones posteriores), asegúrate de actualizar también al paquete
jax[tpu]
más reciente (!pip install -U jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
), reiniciar el entorno de ejecución y verificar que las versionesjax
yjaxlib
coincidan (!pip list | grep jax
). Esto puede evitar que se produzca elRuntimeError
debido a que las versiones dejaxlib
yjax
no coinciden. Para conocer más instrucciones de instalación de JAX, consulta los documentos de JAX. - Consulta RecurrentGemma: Moving Past Transformers para modelos de lenguaje abierto eficientes de Google DeepMind.
- Lee el Griffin: Cómo mezclar recurrencias lineales cerradas con Atención local para modelos de lenguaje eficientes de Google DeepMind para obtener más información sobre la arquitectura de modelos que usa RecurrentGemma.