Panduan deteksi penanda tangan untuk iOS

Tugas MediaPipe Hand Landmarker memungkinkan Anda mendeteksi landmark tangan dalam gambar. Petunjuk ini menunjukkan cara menggunakan Hand Landmarker dengan aplikasi iOS. Contoh kode yang dijelaskan dalam petunjuk ini tersedia di GitHub.

Untuk informasi selengkapnya tentang kemampuan, model, dan opsi konfigurasi tugas ini, lihat Ringkasan.

Contoh kode

Kode contoh MediaPipe Tasks adalah implementasi dasar aplikasi Hand Landmarker untuk iOS. Contoh ini menggunakan kamera di perangkat iOS fisik untuk mendeteksi penanda tangan dalam streaming video berkelanjutan. Aplikasi ini juga dapat mendeteksi penanda tangan dalam gambar dan video dari galeri perangkat.

Anda dapat menggunakan aplikasi ini sebagai titik awal untuk aplikasi iOS Anda sendiri, atau merujuknya saat mengubah aplikasi yang ada. Kode contoh Hand Landmarker dihosting di GitHub.

Mendownload kode

Petunjuk berikut menunjukkan cara membuat salinan lokal dari kode contoh menggunakan alat command line git.

Untuk mendownload kode contoh:

  1. Clone repositori git menggunakan perintah berikut:

    git clone https://github.com/google-ai-edge/mediapipe-samples
    
  2. Secara opsional, konfigurasikan instance git Anda untuk menggunakan checkout jarang, sehingga Anda hanya memiliki file untuk aplikasi contoh Hand Landmarker:

    cd mediapipe
    git sparse-checkout init --cone
    git sparse-checkout set examples/hand_landmarker/ios/
    

Setelah membuat versi lokal kode contoh, Anda dapat menginstal library tugas MediaPipe, membuka project menggunakan Xcode, dan menjalankan aplikasi. Untuk petunjuk, lihat Panduan Penyiapan untuk iOS.

Komponen utama

File berikut berisi kode penting untuk aplikasi contoh Hand Landmarker:

Penyiapan

Bagian ini menjelaskan langkah-langkah utama untuk menyiapkan lingkungan pengembangan dan project kode untuk menggunakan Hand Landmarker. Untuk informasi umum tentang cara menyiapkan lingkungan pengembangan untuk menggunakan tugas MediaPipe, termasuk persyaratan versi platform, lihat Panduan penyiapan untuk iOS.

Dependensi

Hand Landmarker menggunakan library MediaPipeTasksVision, yang harus diinstal menggunakan CocoaPods. Library ini kompatibel dengan aplikasi Swift dan Objective-C dan tidak memerlukan penyiapan khusus bahasa tambahan.

Untuk petunjuk menginstal CocoaPods di macOS, lihat panduan penginstalan CocoaPods. Untuk mengetahui petunjuk cara membuat Podfile dengan pod yang diperlukan untuk aplikasi Anda, lihat Menggunakan CocoaPods.

Tambahkan pod MediaPipeTasksVision di Podfile menggunakan kode berikut:

target 'MyHandLandmarkerApp' do
  use_frameworks!
  pod 'MediaPipeTasksVision'
end

Jika aplikasi Anda menyertakan target pengujian unit, lihat Panduan Penyiapan untuk iOS guna mendapatkan informasi tambahan tentang cara menyiapkan Podfile.

Model

Tugas MediaPipe Hand Landmarker memerlukan model terlatih yang kompatibel dengan tugas ini. Untuk mengetahui informasi selengkapnya tentang model terlatih yang tersedia untuk Hand Landmarker, lihat bagian Model ringkasan tugas.

Pilih dan download model, lalu tambahkan ke direktori project Anda menggunakan Xcode. Untuk mengetahui petunjuk cara menambahkan file ke project Xcode, lihat Mengelola file dan folder di project Xcode.

Gunakan properti BaseOptions.modelAssetPath untuk menentukan jalur ke model di app bundle Anda. Untuk contoh kode, lihat bagian berikutnya.

Membuat tugas

Anda dapat membuat tugas Hand Landmarker dengan memanggil salah satu penginisialisasinya. Penginisialisasi HandLandmarker(options:) menerima nilai untuk opsi konfigurasi.

Jika tidak memerlukan Hand Landmarker yang diinisialisasi dengan opsi konfigurasi yang disesuaikan, Anda dapat menggunakan penginisialisasi HandLandmarker(modelPath:) untuk membuat Hand Landmarker dengan opsi default. Untuk informasi selengkapnya tentang opsi konfigurasi, lihat Ringkasan Konfigurasi.

Tugas Penanda Tangan mendukung 3 jenis data input: gambar diam, file video, dan streaming video live. Secara default, HandLandmarker(modelPath:) melakukan inisialisasi tugas untuk gambar diam. Jika Anda ingin tugas diinisialisasi untuk memproses file video atau streaming video live, gunakan HandLandmarker(options:) untuk menentukan mode video atau livestream yang berjalan. Mode livestream juga memerlukan opsi konfigurasi handLandmarkerLiveStreamDelegate tambahan, yang memungkinkan Hand Landmarker memberikan hasil penanda tangan ke delegasi secara asinkron.

Pilih tab yang sesuai dengan mode lari Anda untuk melihat cara membuat tugas dan menjalankan inferensi.

Swift

Gambar

import MediaPipeTasksVision

let modelPath = Bundle.main.path(forResource: "hand_landmarker",
                                      ofType: "task")

let options = HandLandmarkerOptions()
options.baseOptions.modelAssetPath = modelPath
options.runningMode = .image
options.minHandDetectionConfidence = minHandDetectionConfidence
options.minHandPresenceConfidence = minHandPresenceConfidence
options.minTrackingConfidence = minHandTrackingConfidence
options.numHands = numHands

let handLandmarker = try HandLandmarker(options: options)
    

Video

import MediaPipeTasksVision

let modelPath = Bundle.main.path(forResource: "hand_landmarker",
                                      ofType: "task")

let options = HandLandmarkerOptions()
options.baseOptions.modelAssetPath = modelPath
options.runningMode = .video
options.minHandDetectionConfidence = minHandDetectionConfidence
options.minHandPresenceConfidence = minHandPresenceConfidence
options.minTrackingConfidence = minHandTrackingConfidence
options.numHands = numHands

let handLandmarker = try HandLandmarker(options: options)
    

Livestream

import MediaPipeTasksVision

// Class that conforms to the `HandLandmarkerLiveStreamDelegate` protocol and
// implements the method that the hand landmarker calls once it finishes
// performing landmarks detection in each input frame.
class HandLandmarkerResultProcessor: NSObject, HandLandmarkerLiveStreamDelegate {

  func handLandmarker(
    _ handLandmarker: HandLandmarker,
    didFinishDetection result: HandLandmarkerResult?,
    timestampInMilliseconds: Int,
    error: Error?) {

    // Process the hand landmarker result or errors here.

  }
}

let modelPath = Bundle.main.path(
  forResource: "hand_landmarker",
  ofType: "task")

let options = HandLandmarkerOptions()
options.baseOptions.modelAssetPath = modelPath
options.runningMode = .liveStream
options.minHandDetectionConfidence = minHandDetectionConfidence
options.minHandPresenceConfidence = minHandPresenceConfidence
options.minTrackingConfidence = minHandTrackingConfidence
options.numHands = numHands

// Assign an object of the class to the `handLandmarkerLiveStreamDelegate`
// property.
let processor = HandLandmarkerResultProcessor()
options.handLandmarkerLiveStreamDelegate = processor

let handLandmarker = try HandLandmarker(options: options)
    

Objective-C

Gambar

@import MediaPipeTasksVision;

NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"hand_landmarker"
                                                      ofType:@"task"];

MPPHandLandmarkerOptions *options = [[MPPHandLandmarkerOptions alloc] init];
options.baseOptions.modelAssetPath = modelPath;
options.runningMode = MPPRunningModeImage;
options.minHandDetectionConfidence = minHandDetectionConfidence;
options.minHandPresenceConfidence = minHandPresenceConfidence;
options.minTrackingConfidence = minHandTrackingConfidence;
options.numHands = numHands;

MPPHandLandmarker *handLandmarker =
  [[MPPHandLandmarker alloc] initWithOptions:options error:nil];
    

Video

@import MediaPipeTasksVision;

NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"hand_landmarker"
                                                      ofType:@"task"];

MPPHandLandmarkerOptions *options = [[MPPHandLandmarkerOptions alloc] init];
options.baseOptions.modelAssetPath = modelPath;
options.runningMode = MPPRunningModeVideo;
options.minHandDetectionConfidence = minHandDetectionConfidence;
options.minHandPresenceConfidence = minHandPresenceConfidence;
options.minTrackingConfidence = minHandTrackingConfidence;
options.numHands = numHands;

MPPHandLandmarker *handLandmarker =
  [[MPPHandLandmarker alloc] initWithOptions:options error:nil];
    

Livestream

@import MediaPipeTasksVision;

// Class that conforms to the `MPPHandLandmarkerLiveStreamDelegate` protocol
// and implements the method that the hand landmarker calls once it finishes
// performing landmarks detection in each input frame.

@interface APPHandLandmarkerResultProcessor : NSObject 

@end

@implementation APPHandLandmarkerResultProcessor

-   (void)handLandmarker:(MPPHandLandmarker *)handLandmarker
    didFinishDetectionWithResult:(MPPHandLandmarkerResult *)handLandmarkerResult
         timestampInMilliseconds:(NSInteger)timestampInMilliseconds
                           error:(NSError *)error {

    // Process the hand landmarker result or errors here.

}

@end

NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"hand_landmarker"
                                                      ofType:@"task"];

MPPHandLandmarkerOptions *options = [[MPPHandLandmarkerOptions alloc] init];
options.baseOptions.modelAssetPath = modelPath;
options.runningMode = MPPRunningModeLiveStream;
options.minHandDetectionConfidence = minHandDetectionConfidence;
options.minHandPresenceConfidence = minHandPresenceConfidence;
options.minTrackingConfidence = minHandTrackingConfidence;
options.numHands = numHands;

// Assign an object of the class to the `handLandmarkerLiveStreamDelegate`
// property.
APPHandLandmarkerResultProcessor *processor =
  [APPHandLandmarkerResultProcessor new];
options.handLandmarkerLiveStreamDelegate = processor;

MPPHandLandmarker *handLandmarker =
  [[MPPHandLandmarker alloc] initWithOptions:options error:nil];
    

Opsi konfigurasi

Tugas ini memiliki opsi konfigurasi berikut untuk aplikasi iOS:

Nama Opsi Deskripsi Rentang Nilai Nilai Default
running_mode Menetapkan mode berjalan untuk tugas. Ada tiga mode:

GAMBAR: Mode untuk input gambar tunggal.

VIDEO: Mode untuk frame video yang didekode.

LIVE_STREAM: Mode untuk live stream data input, seperti dari kamera. Dalam mode ini, resultListener harus dipanggil untuk menyiapkan pemroses guna menerima hasil secara asinkron. Dalam mode ini, handLandmarkerLiveStreamDelegate harus ditetapkan ke instance class yang menerapkan HandLandmarkerLiveStreamDelegate untuk menerima hasil deteksi penanda tangan secara asinkron.
{RunningMode.image, RunningMode.video, RunningMode.liveStream} RunningMode.image
numHands Jumlah maksimum tangan yang terdeteksi oleh pendeteksi penanda Tangan. Any integer > 0 1
minHandDetectionConfidence Skor keyakinan minimum agar deteksi tangan dianggap berhasil dalam model deteksi telapak tangan. 0.0 - 1.0 0.5
minHandPresenceConfidence Skor keyakinan minimum untuk skor kehadiran tangan dalam model deteksi penanda tangan. Dalam mode Video dan mode Live stream, jika skor keyakinan kehadiran tangan dari model penanda tangan berada di bawah ambang batas ini, Penanda Tangan akan memicu model deteksi telapak tangan. Jika tidak, algoritma pelacakan tangan ringan akan menentukan lokasi tangan untuk deteksi penanda berikutnya. 0.0 - 1.0 0.5
minTrackingConfidence Skor keyakinan minimum agar pelacakan tangan dianggap berhasil. Ini adalah nilai minimum IoU kotak pembatas antara jarum dalam frame saat ini dan frame terakhir. Dalam mode Video dan mode Streaming Hand Landmarker, jika pelacakan gagal, Hand Landmarker akan memicu deteksi tangan. Jika tidak, deteksi tangan akan dilewati. 0.0 - 1.0 0.5
result_listener Menetapkan pemroses hasil untuk menerima hasil deteksi secara asinkron saat penanda tangan berada dalam mode live stream. Hanya berlaku jika mode berjalan disetel ke LIVE_STREAM T/A T/A

Saat mode berjalan disetel ke livestream, Hand Landmarker memerlukan opsi konfigurasi handLandmarkerLiveStreamDelegate tambahan, yang memungkinkan Hand Landmarker memberikan hasil deteksi penanda tangan secara asinkron. Delegasi harus mengimplementasikan metode handLandmarker(_:didFinishDetection:timestampInMilliseconds:error:), yang dipanggil Hand Landmarker setelah memproses hasil deteksi penanda tangan untuk setiap frame.

Nama opsi Deskripsi Rentang Nilai Nilai Default
handLandmarkerLiveStreamDelegate Memungkinkan Hand Landmarker menerima hasil deteksi penanda tangan secara asinkron dalam mode live stream. Class yang instance-nya ditetapkan ke properti ini harus mengimplementasikan metode handLandmarker(_:didFinishDetection:timestampInMilliseconds:error:). Tidak berlaku Tidak ditetapkan

Menyiapkan data

Anda harus mengonversi gambar atau bingkai input menjadi objek MPImage sebelum meneruskannya ke Hand Landmarker. MPImage mendukung berbagai jenis format gambar iOS, dan dapat menggunakannya dalam mode berjalan apa pun untuk inferensi. Untuk informasi selengkapnya tentang MPImage, lihat MPImage API.

Pilih format gambar iOS berdasarkan kasus penggunaan dan mode operasi yang diperlukan aplikasi Anda.MPImage menerima format gambar iOS UIImage, CVPixelBuffer, dan CMSampleBuffer.

UIImage

Format UIImage sangat cocok untuk mode operasi berikut:

  • Gambar: gambar dari app bundle, galeri pengguna, atau sistem file yang diformat sebagai gambar UIImage dapat dikonversi menjadi objek MPImage.

  • Video: gunakan AVAssetImageGenerator untuk mengekstrak frame video ke format CGImage, lalu konversikan ke gambar UIImage.

Swift

// Load an image on the user's device as an iOS `UIImage` object.

// Convert the `UIImage` object to a MediaPipe's Image object having the default
// orientation `UIImage.Orientation.up`.
let image = try MPImage(uiImage: image)
    

Objective-C

// Load an image on the user's device as an iOS `UIImage` object.

// Convert the `UIImage` object to a MediaPipe's Image object having the default
// orientation `UIImageOrientationUp`.
MPImage *image = [[MPPImage alloc] initWithUIImage:image error:nil];
    

Contoh ini menginisialisasi MPImage dengan orientasi UIImage.Orientation.Up default. Anda dapat menginisialisasi MPImage dengan salah satu nilai UIImage.Orientation yang didukung. Hand Landmarker tidak mendukung orientasi yang dicerminkan seperti .upMirrored, .downMirrored, .leftMirrored, .rightMirrored.

Untuk mengetahui informasi selengkapnya tentang UIImage, lihat Dokumentasi Developer Apple UIImage.

CVPixelBuffer

Format CVPixelBuffer sangat cocok untuk aplikasi yang menghasilkan frame dan menggunakan framework CoreImage iOS untuk pemrosesan.

Format CVPixelBuffer sangat cocok untuk mode operasi berikut:

  • Gambar: aplikasi yang menghasilkan gambar CVPixelBuffer setelah beberapa pemrosesan menggunakan framework CoreImage iOS dapat dikirim ke Hand Landmarker dalam mode gambar yang berjalan.

  • Video: frame video dapat dikonversi ke format CVPixelBuffer untuk pemrosesan, lalu dikirim ke Hand Landmarker dalam mode video.

  • livestream: aplikasi yang menggunakan kamera iOS untuk menghasilkan frame dapat dikonversi ke format CVPixelBuffer untuk diproses sebelum dikirim ke Hand Landmarker dalam mode livestream.

Swift

// Obtain a CVPixelBuffer.

// Convert the `CVPixelBuffer` object to a MediaPipe's Image object having the default
// orientation `UIImage.Orientation.up`.
let image = try MPImage(pixelBuffer: pixelBuffer)
    

Objective-C

// Obtain a CVPixelBuffer.

// Convert the `CVPixelBuffer` object to a MediaPipe's Image object having the
// default orientation `UIImageOrientationUp`.
MPImage *image = [[MPPImage alloc] initWithUIImage:image error:nil];
    

Untuk mengetahui informasi selengkapnya tentang CVPixelBuffer, lihat Dokumentasi Developer Apple CVPixelBuffer.

CMSampleBuffer

Format CMSampleBuffer menyimpan sampel media dari jenis media yang seragam, dan cocok untuk mode yang berjalan di livestream. Frame live dari kamera iOS dikirim secara asinkron dalam format CMSampleBuffer oleh iOS AVCaptureVideoDataOutput.

Swift

// Obtain a CMSampleBuffer.

// Convert the `CMSampleBuffer` object to a MediaPipe's Image object having the default
// orientation `UIImage.Orientation.up`.
let image = try MPImage(sampleBuffer: sampleBuffer)
    

Objective-C

// Obtain a `CMSampleBuffer`.

// Convert the `CMSampleBuffer` object to a MediaPipe's Image object having the
// default orientation `UIImageOrientationUp`.
MPImage *image = [[MPPImage alloc] initWithSampleBuffer:sampleBuffer error:nil];
    

Untuk mengetahui informasi selengkapnya tentang CMSampleBuffer, lihat Dokumentasi Developer Apple CMSampleBuffer.

Menjalankan tugas

Untuk menjalankan Hand Landmarker, gunakan metode detect() yang khusus untuk mode jalan yang ditetapkan:

  • Gambar diam: detect(image:)
  • Video: detect(videoFrame:timestampInMilliseconds:)
  • Livestream: detectAsync(image:timestampInMilliseconds:)

Swift

Gambar

let result = try handLandmarker.detect(image: image)
    

Video

let result = try handLandmarker.detect(
    videoFrame: image,
    timestampInMilliseconds: timestamp)
    

Livestream

try handLandmarker.detectAsync(
  image: image,
  timestampInMilliseconds: timestamp)
    

Objective-C

Gambar

MPPHandLandmarkerResult *result =
  [handLandmarker detectInImage:image error:nil];
    

Video

MPPHandLandmarkerResult *result =
  [handLandmarker detectInVideoFrame:image
             timestampInMilliseconds:timestamp
                               error:nil];
    

Livestream

BOOL success =
  [handLandmarker detectAsyncInImage:image
             timestampInMilliseconds:timestamp
                               error:nil];
    

Contoh kode Hand Landmarker menunjukkan implementasi setiap mode ini secara lebih mendetail. Kode contoh memungkinkan pengguna beralih antara mode pemrosesan, yang mungkin tidak diperlukan untuk kasus penggunaan Anda.

Perhatikan hal berikut:

  • Saat berjalan dalam mode video atau mode livestream, Anda juga harus memberikan stempel waktu frame input ke tugas Hand Landmarker.

  • Saat berjalan dalam mode gambar atau video, tugas Hand Landmarker memblokir thread saat ini hingga selesai memproses gambar atau bingkai input. Untuk menghindari pemblokiran thread saat ini, jalankan pemrosesan di thread latar belakang menggunakan framework Dispatch atau NSOperation iOS.

  • Saat berjalan dalam mode livestream, tugas Hand Landmarker akan langsung ditampilkan dan tidak memblokir thread saat ini. Metode ini memanggil metode handLandmarker(_:didFinishDetection:timestampInMilliseconds:error:) dengan hasil penanda tangan setelah memproses setiap frame input. Hand Landmarker memanggil metode ini secara asinkron di antrean pengiriman serial khusus. Untuk menampilkan hasil di antarmuka pengguna, kirimkan hasil ke antrean utama setelah memproses hasil. Jika fungsi detectAsync dipanggil saat tugas Hand Landmarker sibuk memproses frame lain, Hand Landmarker akan mengabaikan frame input baru.

Menangani dan menampilkan hasil

Setelah menjalankan inferensi, tugas Penanda Tangan menampilkan HandLandmarkerResult yang berisi penanda tangan dalam koordinat gambar, penanda tangan dalam koordinat dunia, dan tangan dominan(tangan kiri/kanan) dari tangan yang terdeteksi.

Berikut adalah contoh data output dari tugas ini:

Output HandLandmarkerResult berisi tiga komponen. Setiap komponen adalah array, dengan setiap elemen berisi hasil berikut untuk satu tangan yang terdeteksi:

  • Tangan dominan

    Kecenderungan tangan menunjukkan apakah tangan yang terdeteksi adalah tangan kiri atau kanan.

  • Tempat terkenal

    Ada 21 penanda tangan, masing-masing terdiri dari koordinat x, y, dan z. Koordinat x dan y masing-masing dinormalkan ke [0,0, 1,0] berdasarkan lebar dan tinggi gambar. Koordinat z mewakili kedalaman penanda, dengan kedalaman di pergelangan tangan sebagai asal. Makin kecil nilainya, makin dekat titik penanda ke kamera. Besar z menggunakan skala yang kira-kira sama dengan x.

  • Landmark Dunia

    Landmark 21 tangan juga ditampilkan dalam koordinat dunia. Setiap penanda geografis terdiri dari x, y, dan z, yang mewakili koordinat 3D dunia nyata dalam meter dengan asal di pusat geometris tangan.

HandLandmarkerResult:
  Handedness:
    Categories #0:
      index        : 0
      score        : 0.98396
      categoryName : Left
  Landmarks:
    Landmark #0:
      x            : 0.638852
      y            : 0.671197
      z            : -3.41E-7
    Landmark #1:
      x            : 0.634599
      y            : 0.536441
      z            : -0.06984
    ... (21 landmarks for a hand)
  WorldLandmarks:
    Landmark #0:
      x            : 0.067485
      y            : 0.031084
      z            : 0.055223
    Landmark #1:
      x            : 0.063209
      y            : -0.00382
      z            : 0.020920
    ... (21 world landmarks for a hand)

Gambar berikut menunjukkan visualisasi output tugas: