Zgodność z OpenAI

Modele Gemini są dostępne za pomocą bibliotek OpenAI (Python i TypeScript/Javascript) oraz interfejsu REST API. Aby z nich korzystać, wystarczy zaktualizować 3 linie kodu i użyć klucza Gemini API. Jeśli nie korzystasz jeszcze z bibliotek OpenAI, zalecamy bezpośrednie wywołanie interfejsu Gemini API.

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
    model="gemini-2.0-flash",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {
            "role": "user",
            "content": "Explain to me how AI works"
        }
    ]
)

print(response.choices[0].message)
import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

const response = await openai.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: [
        { role: "system", content: "You are a helpful assistant." },
        {
            role: "user",
            content: "Explain to me how AI works",
        },
    ],
});

console.log(response.choices[0].message);
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.0-flash",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
    ]
    }'

Co się zmieniło? Tylko 3 wiersze.

  • api_key="GEMINI_API_KEY": zastąp „GEMINI_API_KEY” swoim kluczem interfejsu Gemini API, który możesz uzyskać w Google AI Studio.

  • base_url="https://generativelanguage.googleapis.com/v1beta/openai/": ta opcja informuje bibliotekę OpenAI, aby wysyłała żądania do punktu końcowego interfejsu Gemini API zamiast do domyślnego adresu URL.

  • model="gemini-2.0-flash": wybierz zgodny model Gemini

Zastanawiam się

Modele Gemini 2.5 są trenowane tak, aby rozwiązywać złożone problemy, co prowadzi do znacznego polepszania rozumowania. Gemini API zawiera parametr „budżet myślenia”, który umożliwia dokładne określenie, jak długo model ma myśleć.

W przeciwieństwie do Gemini API interfejs OpenAI API oferuje 3 poziomy kontroli myślenia: „low” (niska), „medium” (średnia) i „high” (wysoka), które pod spodem mapujemy na budżety tokenów o wartościach 1000, 8000 i 24000.

Jeśli chcesz wyłączyć myślenie, możesz ustawić wysiłek rozumowania na „brak”.

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
    model="gemini-2.5-flash-preview-04-17",
    reasoning_effort="low",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {
            "role": "user",
            "content": "Explain to me how AI works"
        }
    ]
)

print(response.choices[0].message)
import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

const response = await openai.chat.completions.create({
    model: "gemini-2.5-flash-preview-04-17",
    reasoning_effort: "low",
    messages: [
        { role: "system", content: "You are a helpful assistant." },
        {
            role: "user",
            content: "Explain to me how AI works",
        },
    ],
});

console.log(response.choices[0].message);
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash-preview-04-17",
    "reasoning_effort": "low",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
      ]
    }'

Streaming

Interfejs Gemini API obsługuje strumień odpowiedzi.

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
  model="gemini-2.0-flash",
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Hello!"}
  ],
  stream=True
)

for chunk in response:
    print(chunk.choices[0].delta)
import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const completion = await openai.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: [
      {"role": "system", "content": "You are a helpful assistant."},
      {"role": "user", "content": "Hello!"}
    ],
    stream: true,
  });

  for await (const chunk of completion) {
    console.log(chunk.choices[0].delta.content);
  }
}

main();
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.0-flash",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
    ],
    "stream": true
  }'

Wywoływanie funkcji

Funkcja wywoływania ułatwia uzyskiwanie uporządkowanych danych wyjściowych z modeli generatywnych i jest obsługiwana w interfejsie Gemini API.

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

tools = [
  {
    "type": "function",
    "function": {
      "name": "get_weather",
      "description": "Get the weather in a given location",
      "parameters": {
        "type": "object",
        "properties": {
          "location": {
            "type": "string",
            "description": "The city and state, e.g. Chicago, IL",
          },
          "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
        },
        "required": ["location"],
      },
    }
  }
]

messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
  model="gemini-2.0-flash",
  messages=messages,
  tools=tools,
  tool_choice="auto"
)

print(response)
import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}];
  const tools = [
      {
        "type": "function",
        "function": {
          "name": "get_weather",
          "description": "Get the weather in a given location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {
                "type": "string",
                "description": "The city and state, e.g. Chicago, IL",
              },
              "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
            },
            "required": ["location"],
          },
        }
      }
  ];

  const response = await openai.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: messages,
    tools: tools,
    tool_choice: "auto",
  });

  console.log(response);
}

main();
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
  "model": "gemini-2.0-flash",
  "messages": [
    {
      "role": "user",
      "content": "What'\''s the weather like in Chicago today?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
          "type": "object",
          "properties": {
            "location": {
              "type": "string",
              "description": "The city and state, e.g. Chicago, IL"
            },
            "unit": {
              "type": "string",
              "enum": ["celsius", "fahrenheit"]
            }
          },
          "required": ["location"]
        }
      }
    }
  ],
  "tool_choice": "auto"
}'

Rozpoznawanie obrazów

Modele Gemini są multimodalne i zapewniają najlepsze w swoim rodzaju wyniki w wielu typowych zadaniach związanych z przetwarzaniem obrazu.

import base64
from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

# Function to encode the image
def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')

# Getting the base64 string
base64_image = encode_image("Path/to/agi/image.jpeg")

response = client.chat.completions.create(
  model="gemini-2.0-flash",
  messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What is in this image?",
        },
        {
          "type": "image_url",
          "image_url": {
            "url":  f"data:image/jpeg;base64,{base64_image}"
          },
        },
      ],
    }
  ],
)

print(response.choices[0])
import OpenAI from "openai";
import fs from 'fs/promises';

const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function encodeImage(imagePath) {
  try {
    const imageBuffer = await fs.readFile(imagePath);
    return imageBuffer.toString('base64');
  } catch (error) {
    console.error("Error encoding image:", error);
    return null;
  }
}

async function main() {
  const imagePath = "Path/to/agi/image.jpeg";
  const base64Image = await encodeImage(imagePath);

  const messages = [
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What is in this image?",
        },
        {
          "type": "image_url",
          "image_url": {
            "url": `data:image/jpeg;base64,${base64Image}`
          },
        },
      ],
    }
  ];

  try {
    const response = await openai.chat.completions.create({
      model: "gemini-2.0-flash",
      messages: messages,
    });

    console.log(response.choices[0]);
  } catch (error) {
    console.error("Error calling Gemini API:", error);
  }
}

main();
bash -c '
  base64_image=$(base64 -i "Path/to/agi/image.jpeg");
  curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer GEMINI_API_KEY" \
    -d "{
      \"model\": \"gemini-2.0-flash\",
      \"messages\": [
        {
          \"role\": \"user\",
          \"content\": [
            { \"type\": \"text\", \"text\": \"What is in this image?\" },
            {
              \"type\": \"image_url\",
              \"image_url\": { \"url\": \"data:image/jpeg;base64,${base64_image}\" }
            }
          ]
        }
      ]
    }"
'

Generowanie obrazu

Generowanie obrazu:

import base64
from openai import OpenAI
from PIL import Image
from io import BytesIO

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
)

response = client.images.generate(
    model="imagen-3.0-generate-002",
    prompt="a portrait of a sheepadoodle wearing a cape",
    response_format='b64_json',
    n=1,
)

for image_data in response.data:
  image = Image.open(BytesIO(base64.b64decode(image_data.b64_json)))
  image.show()
import OpenAI from "openai";

const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});

async function main() {
  const image = await openai.images.generate(
    {
      model: "imagen-3.0-generate-002",
      prompt: "a portrait of a sheepadoodle wearing a cape",
      response_format: "b64_json",
      n: 1,
    }
  );

  console.log(image.data);
}

main();
curl "https://generativelanguage.googleapis.com/v1beta/openai/images/generations" \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer GEMINI_API_KEY" \
  -d '{
        "model": "imagen-3.0-generate-002",
        "prompt": "a portrait of a sheepadoodle wearing a cape",
        "response_format": "b64_json",
        "n": 1,
      }'

Rozpoznawanie dźwięku

Analizowanie wejścia audio:

import base64
from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

with open("/path/to/your/audio/file.wav", "rb") as audio_file:
  base64_audio = base64.b64encode(audio_file.read()).decode('utf-8')

response = client.chat.completions.create(
    model="gemini-2.0-flash",
    messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "Transcribe this audio",
        },
        {
              "type": "input_audio",
              "input_audio": {
                "data": base64_audio,
                "format": "wav"
          }
        }
      ],
    }
  ],
)

print(response.choices[0].message.content)
import fs from "fs";
import OpenAI from "openai";

const client = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});

const audioFile = fs.readFileSync("/path/to/your/audio/file.wav");
const base64Audio = Buffer.from(audioFile).toString("base64");

async function main() {
  const response = await client.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: [
      {
        role: "user",
        content: [
          {
            type: "text",
            text: "Transcribe this audio",
          },
          {
            type: "input_audio",
            input_audio: {
              data: base64Audio,
              format: "wav",
            },
          },
        ],
      },
    ],
  });

  console.log(response.choices[0].message.content);
}

main();
bash -c '
  base64_audio=$(base64 -i "/path/to/your/audio/file.wav");
  curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer GEMINI_API_KEY" \
    -d "{
      \"model\": \"gemini-2.0-flash\",
      \"messages\": [
        {
          \"role\": \"user\",
          \"content\": [
            { \"type\": \"text\", \"text\": \"Transcribe this audio file.\" },
            {
              \"type\": \"input_audio\",
              \"input_audio\": {
                \"data\": \"${base64_audio}\",
                \"format\": \"wav\"
              }
            }
          ]
        }
      ]
    }"
'

Uporządkowane dane wyjściowe

Modele Gemini mogą generować obiekty JSON w dowolnej strukturze zdefiniowanej przez Ciebie.

from pydantic import BaseModel
from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

class CalendarEvent(BaseModel):
    name: str
    date: str
    participants: list[str]

completion = client.beta.chat.completions.parse(
    model="gemini-2.0-flash",
    messages=[
        {"role": "system", "content": "Extract the event information."},
        {"role": "user", "content": "John and Susan are going to an AI conference on Friday."},
    ],
    response_format=CalendarEvent,
)

print(completion.choices[0].message.parsed)
import OpenAI from "openai";
import { zodResponseFormat } from "openai/helpers/zod";
import { z } from "zod";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai"
});

const CalendarEvent = z.object({
  name: z.string(),
  date: z.string(),
  participants: z.array(z.string()),
});

const completion = await openai.beta.chat.completions.parse({
  model: "gemini-2.0-flash",
  messages: [
    { role: "system", content: "Extract the event information." },
    { role: "user", content: "John and Susan are going to an AI conference on Friday" },
  ],
  response_format: zodResponseFormat(CalendarEvent, "event"),
});

const event = completion.choices[0].message.parsed;
console.log(event);

Wektory

Wektory dystrybucyjne tekstu służą do pomiaru podobieństwa ciągów tekstowych i mogą być generowane za pomocą interfejsu Gemini API.

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.embeddings.create(
    input="Your text string goes here",
    model="text-embedding-004"
)

print(response.data[0].embedding)
import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const embedding = await openai.embeddings.create({
    model: "text-embedding-004",
    input: "Your text string goes here",
  });

  console.log(embedding);
}

main();
curl "https://generativelanguage.googleapis.com/v1beta/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "input": "Your text string goes here",
    "model": "text-embedding-004"
  }'

Wyświetlenie listy modeli

Lista dostępnych modeli Gemini:

from openai import OpenAI

client = OpenAI(
  api_key="GEMINI_API_KEY",
  base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

models = client.models.list()
for model in models:
  print(model.id)
import OpenAI from "openai";

const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});

async function main() {
  const list = await openai.models.list();

  for await (const model of list) {
    console.log(model);
  }
}
main();
curl https://generativelanguage.googleapis.com/v1beta/openai/models \
-H "Authorization: Bearer GEMINI_API_KEY"

Pobieranie modelu

Pobierz model Gemini:

from openai import OpenAI

client = OpenAI(
  api_key="GEMINI_API_KEY",
  base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

model = client.models.retrieve("gemini-2.0-flash")
print(model.id)
import OpenAI from "openai";

const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});

async function main() {
  const model = await openai.models.retrieve("gemini-2.0-flash");
  console.log(model.id);
}

main();
curl https://generativelanguage.googleapis.com/v1beta/openai/models/gemini-2.0-flash \
-H "Authorization: Bearer GEMINI_API_KEY"

Obecne ograniczenia

Obsługa bibliotek OpenAI jest nadal w wersji beta, ponieważ rozszerzamy obsługę funkcji.

Jeśli masz pytania na temat obsługiwanych parametrów, nadchodzących funkcji lub napotykasz jakiekolwiek problemy podczas korzystania z Gemini, dołącz do naszego Forum dla programistów.