View source on GitHub
|
Dataset library for image classifier.
Inherits From: ClassificationDataset, Dataset
mediapipe_model_maker.image_classifier.Dataset(
dataset: tf.data.Dataset,
label_names: List[str],
size: Optional[int] = None
)
Attributes | |
|---|---|
label_names
|
|
num_classes
|
|
size
|
Returns the size of the dataset.
Same functionality as calling len. See the len method definition for more information. |
Methods
from_folder
@classmethodfrom_folder( dirname: str, shuffle: bool = True ) ->mediapipe_model_maker.face_stylizer.dataset.classification_dataset.ClassificationDataset
Loads images and labels from the given directory.
Assume the image data of the same label are in the same subdirectory.
| Args | |
|---|---|
dirname
|
Name of the directory containing the data files. |
shuffle
|
boolean, if true, random shuffle data. |
| Returns | |
|---|---|
| Dataset containing images and labels and other related info. |
| Raises | |
|---|---|
ValueError
|
if the input data directory is empty. |
gen_tf_dataset
gen_tf_dataset(
batch_size: int = 1,
is_training: bool = False,
shuffle: bool = False,
preprocess: Optional[Callable[..., Any]] = None,
drop_remainder: bool = False
) -> tf.data.Dataset
Generates a batched tf.data.Dataset for training/evaluation.
| Args | |
|---|---|
batch_size
|
An integer, the returned dataset will be batched by this size. |
is_training
|
A boolean, when True, the returned dataset will be optionally shuffled and repeated as an endless dataset. |
shuffle
|
A boolean, when True, the returned dataset will be shuffled to create randomness during model training. |
preprocess
|
A function taking three arguments in order, feature, label and boolean is_training. |
drop_remainder
|
boolean, whether the finally batch drops remainder. |
| Returns | |
|---|---|
| A TF dataset ready to be consumed by Keras model. |
split
split(
fraction: float
) -> Tuple[ds._DatasetT, ds._DatasetT]
Splits dataset into two sub-datasets with the given fraction.
Primarily used for splitting the data set into training and testing sets.
| Args | |
|---|---|
fraction
|
float, demonstrates the fraction of the first returned subdataset in the original data. |
| Returns | |
|---|---|
| The splitted two sub datasets. |
__len__
__len__() -> int
Returns the number of element of the dataset.
If size is not set, this method will fallback to using the len method of the tf.data.Dataset in self._dataset. Calling len on a tf.data.Dataset instance may throw a TypeError because the dataset may be lazy-loaded with an unknown size or have infinite size.
In most cases, however, when an instance of this class is created by helper functions like 'from_folder', the size of the dataset will be preprocessed, and the _size instance variable will be already set.
| Raises | |
|---|---|
| TypeError if self._size is not set and the cardinality of self._dataset is INFINITE_CARDINALITY or UNKNOWN_CARDINALITY. |
View source on GitHub