View source on GitHub |
Writes metadata into an image segmenter.
Inherits From: MetadataWriter
tflite_support.metadata_writers.image_segmenter.MetadataWriter(
model_buffer: bytearray,
metadata_buffer: Optional[bytearray] = None,
associated_files: Optional[List[str]] = None
)
Args | |
---|---|
model_buffer
|
valid buffer of the model file. |
metadata_buffer
|
valid buffer of the metadata. |
associated_files
|
path to the associated files to be populated. |
Methods
create_for_inference
@classmethod
create_for_inference( model_buffer: bytearray, input_norm_mean: List[float], input_norm_std: List[float], label_file_paths: List[str] )
Creates mandatory metadata for TFLite Support inference.
The parameters required in this method are mandatory when using TFLite
Support features, such as Task library and Codegen tool (Android Studio ML
Binding). Other metadata fields will be set to default. If other fields need
to be filled, use the method create_from_metadata_info
to edit them.
Args | |
---|---|
model_buffer
|
valid buffer of the model file. |
input_norm_mean
|
the mean value used in the input tensor normalization 1. |
input_norm_std
|
the std value used in the input tensor normalizarion 1. |
label_file_paths
|
paths to the label files 2 in the category tensor. Pass in an empty list If the model does not have any label file. |
Returns | |
---|---|
A MetadataWriter object. |
create_from_metadata
@classmethod
create_from_metadata( model_buffer: bytearray, model_metadata: Optional[
tflite_support.metadata_schema_py_generated.ModelMetadataT
] = None, input_metadata: Optional[List[_metadata_fb.TensorMetadataT]] = None, output_metadata: Optional[List[_metadata_fb.TensorMetadataT]] = None, associated_files: Optional[List[str]] = None, input_process_units: Optional[List[_metadata_fb.ProcessUnitT]] = None, output_process_units: Optional[List[_metadata_fb.ProcessUnitT]] = None )
Creates MetadataWriter based on the metadata Flatbuffers Python Objects.
Args | |
---|---|
model_buffer
|
valid buffer of the model file. |
model_metadata
|
general model metadata 1. The subgraph_metadata will be refreshed with input_metadata and output_metadata. |
input_metadata
|
a list of metadata of the input tensors 2. |
output_metadata
|
a list of metadata of the output tensors 3. |
associated_files
|
path to the associated files to be populated. |
input_process_units
|
a lits of metadata of the input process units 4. |
output_process_units
|
a lits of metadata of the output process units 5. |
Returns | |
---|---|
A MetadataWriter Object. |
create_from_metadata_info
@classmethod
create_from_metadata_info( model_buffer: bytearray, general_md: Optional[
tflite_support.metadata_writers.metadata_info.GeneralMd
] = None, input_md: Optional[tflite_support.metadata_writers.metadata_info.InputImageTensorMd
] = None, output_md: Optional[tflite_support.metadata_writers.metadata_info.TensorMd
] = None )
Creates MetadataWriter based on general/input/outputs information.
Args | |
---|---|
model_buffer
|
valid buffer of the model file. |
general_md
|
general information about the model. |
input_md
|
input image tensor informaton. |
output_md
|
output segmentation mask tensor informaton. This tensor is a multidimensional array of [1 x mask_height x mask_width x num_classes], where mask_width and mask_height are the dimensions of the segmentation masks produced by the model, and num_classes is the number of classes supported by the model. |
Returns | |
---|---|
A MetadataWriter object. |
get_metadata_json
get_metadata_json() -> str
Gets the generated JSON metadata string before populated into model.
This method returns the metadata buffer before populated into the model. More fields could be filled by MetadataPopulator, such as min_parser_version. Use get_populated_metadata_json() if you want to get the final metadata string.
Returns | |
---|---|
The generated JSON metadata string before populated into model. |
get_populated_metadata_json
get_populated_metadata_json() -> str
Gets the generated JSON metadata string after populated into model.
More fields could be filled by MetadataPopulator, such as min_parser_version. Use get_metadata_json() if you want to get the original metadata string.
Returns | |
---|---|
The generated JSON metadata string after populated into model. |
populate
populate() -> bytearray
Populates the metadata and label file to the model file.
Returns | |
---|---|
A new model buffer with the metadata and associated files. |