|  View source on GitHub | 
Configuration for post-training quantization.
mediapipe_model_maker.quantization.QuantizationConfig(
    optimizations: Optional[Union[tf.lite.Optimize, List[tf.lite.Optimize]]] = None,
    representative_data: Optional[mediapipe_model_maker.model_util.dataset.Dataset] = None,
    quantization_steps: Optional[int] = None,
    inference_input_type: Optional[tf.dtypes.DType] = None,
    inference_output_type: Optional[tf.dtypes.DType] = None,
    supported_ops: Optional[Union[tf.lite.OpsSet, List[tf.lite.OpsSet]]] = None,
    supported_types: Optional[Union[tf.dtypes.DType, List[tf.dtypes.DType]]] = None,
    experimental_new_quantizer: bool = False
)
Refer to https://www.tensorflow.org/lite/performance/post_training_quantization for different post-training quantization options.
| Raises | |
|---|---|
| ValueError | if inference_input_type or inference_output_type are set but not in {tf.float32, tf.uint8, tf.int8}. | 
Methods
for_dynamic
@classmethodfor_dynamic() -> 'QuantizationConfig'
Creates configuration for dynamic range quantization.
for_float16
@classmethodfor_float16() -> 'QuantizationConfig'
Creates configuration for float16 quantization.
for_int8
@classmethodfor_int8( representative_data:mediapipe_model_maker.model_util.dataset.Dataset, quantization_steps: int = DEFAULT_QUANTIZATION_STEPS, inference_input_type: tf.dtypes.DType = tf.uint8, inference_output_type: tf.dtypes.DType = tf.uint8, supported_ops: tf.lite.OpsSet = tf.lite.OpsSet.TFLITE_BUILTINS_INT8 ) -> 'QuantizationConfig'
Creates configuration for full integer quantization.
| Args | |
|---|---|
| representative_data | Representative data used for post-training quantization. | 
| quantization_steps | Number of post-training quantization calibration steps to run. | 
| inference_input_type | Target data type of real-number input arrays. | 
| inference_output_type | Target data type of real-number output arrays. | 
| supported_ops | Set of tf.lite.OpsSetoptions, where each option
represents a set of operators supported by the target device. | 
| Returns | |
|---|---|
| QuantizationConfig. | 
set_converter_with_quantization
set_converter_with_quantization(
    converter: tf.lite.TFLiteConverter, **kwargs
) -> tf.lite.TFLiteConverter
Sets input TFLite converter with quantization configurations.
| Args | |
|---|---|
| converter | input tf.lite.TFLiteConverter. | 
| **kwargs | arguments used by ds.Dataset.gen_tf_dataset. | 
| Returns | |
|---|---|
| tf.lite.TFLiteConverter with quantization configurations. |