|  View source on GitHub | 
ImageClassifier for building image classification model.
mediapipe_model_maker.image_classifier.ImageClassifier(
    model_spec: mediapipe_model_maker.image_classifier.ModelSpec,
    label_names: List[str],
    hparams: mediapipe_model_maker.image_classifier.HParams,
    model_options: mediapipe_model_maker.image_classifier.ModelOptions
)
Methods
create
@classmethodcreate( train_data:mediapipe_model_maker.face_stylizer.dataset.classification_dataset.ClassificationDataset, validation_data:mediapipe_model_maker.face_stylizer.dataset.classification_dataset.ClassificationDataset, options:mediapipe_model_maker.image_classifier.ImageClassifierOptions) -> 'ImageClassifier'
Creates and trains an ImageClassifier.
Loads data and trains the model based on data for image classification. If a checkpoint file exists in the {options.hparams.export_dir}/checkpoint/ directory, the training process will load the weight from the checkpoint file for continual training.
| Args | |
|---|---|
| train_data | Training data. | 
| validation_data | Validation data. | 
| options | configuration to create image classifier. | 
| Returns | |
|---|---|
| An instance based on ImageClassifier. | 
evaluate
evaluate(
    data: mediapipe_model_maker.model_util.dataset.Dataset,
    batch_size: int = 32
) -> Any
Evaluates the classifier with the provided evaluation dataset.
| Args | |
|---|---|
| data | Evaluation dataset | 
| batch_size | Number of samples per evaluation step. | 
| Returns | |
|---|---|
| The loss value and accuracy. | 
export_labels
export_labels(
    export_dir: str, label_filename: str = 'labels.txt'
)
Exports classification labels into a label file.
| Args | |
|---|---|
| export_dir | The directory to save exported files. | 
| label_filename | File name to save labels model. The full export path is {export_dir}/{label_filename}. | 
export_model
export_model(
    model_name: str = 'model.tflite',
    quantization_config: Optional[mediapipe_model_maker.quantization.QuantizationConfig] = None
)
Converts and saves the model to a TFLite file with metadata included.
Note that only the TFLite file is needed for deployment. This function also saves a metadata.json file to the same directory as the TFLite file which can be used to interpret the metadata content in the TFLite file.
| Args | |
|---|---|
| model_name | File name to save TFLite model with metadata. The full export path is {self._hparams.export_dir}/{model_name}. | 
| quantization_config | The configuration for model quantization. | 
export_tflite
export_tflite(
    export_dir: str,
    tflite_filename: str = 'model.tflite',
    quantization_config: Optional[mediapipe_model_maker.quantization.QuantizationConfig] = None,
    preprocess: Optional[Callable[..., bool]] = None
)
Converts the model to requested formats.
| Args | |
|---|---|
| export_dir | The directory to save exported files. | 
| tflite_filename | File name to save TFLite model. The full export path is {export_dir}/{tflite_filename}. | 
| quantization_config | The configuration for model quantization. | 
| preprocess | A callable to preprocess the representative dataset for quantization. The callable takes three arguments in order: feature, label, and is_training. | 
summary
summary()
Prints a summary of the model.